Evaluate
\frac{9\sqrt{5}}{8}\approx 2.515576475
Share
Copied to clipboard
\frac{-\frac{3}{2}\times \frac{3}{4}\times 2\sqrt{3}\sqrt{75}}{-3\sqrt{20}}
Cancel out 3 in both numerator and denominator.
\frac{-\frac{3}{2}\times \frac{3}{4}\times 2\sqrt{3}\sqrt{3}\sqrt{25}}{-3\sqrt{20}}
Factor 75=3\times 25. Rewrite the square root of the product \sqrt{3\times 25} as the product of square roots \sqrt{3}\sqrt{25}.
\frac{-\frac{3}{2}\times \frac{3}{4}\times 2\times 3\sqrt{25}}{-3\sqrt{20}}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{\frac{-3\times 3}{2\times 4}\times 2\times 3\sqrt{25}}{-3\sqrt{20}}
Multiply -\frac{3}{2} times \frac{3}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{\frac{-9}{8}\times 2\times 3\sqrt{25}}{-3\sqrt{20}}
Do the multiplications in the fraction \frac{-3\times 3}{2\times 4}.
\frac{-\frac{9}{8}\times 2\times 3\sqrt{25}}{-3\sqrt{20}}
Fraction \frac{-9}{8} can be rewritten as -\frac{9}{8} by extracting the negative sign.
\frac{\frac{-9\times 2}{8}\times 3\sqrt{25}}{-3\sqrt{20}}
Express -\frac{9}{8}\times 2 as a single fraction.
\frac{\frac{-18}{8}\times 3\sqrt{25}}{-3\sqrt{20}}
Multiply -9 and 2 to get -18.
\frac{-\frac{9}{4}\times 3\sqrt{25}}{-3\sqrt{20}}
Reduce the fraction \frac{-18}{8} to lowest terms by extracting and canceling out 2.
\frac{\frac{-9\times 3}{4}\sqrt{25}}{-3\sqrt{20}}
Express -\frac{9}{4}\times 3 as a single fraction.
\frac{\frac{-27}{4}\sqrt{25}}{-3\sqrt{20}}
Multiply -9 and 3 to get -27.
\frac{-\frac{27}{4}\sqrt{25}}{-3\sqrt{20}}
Fraction \frac{-27}{4} can be rewritten as -\frac{27}{4} by extracting the negative sign.
\frac{-\frac{27}{4}\times 5}{-3\sqrt{20}}
Calculate the square root of 25 and get 5.
\frac{\frac{-27\times 5}{4}}{-3\sqrt{20}}
Express -\frac{27}{4}\times 5 as a single fraction.
\frac{\frac{-135}{4}}{-3\sqrt{20}}
Multiply -27 and 5 to get -135.
\frac{-\frac{135}{4}}{-3\sqrt{20}}
Fraction \frac{-135}{4} can be rewritten as -\frac{135}{4} by extracting the negative sign.
\frac{-\frac{135}{4}}{-3\times 2\sqrt{5}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{-\frac{135}{4}}{-6\sqrt{5}}
Multiply -3 and 2 to get -6.
\frac{-135}{4\left(-6\right)\sqrt{5}}
Express \frac{-\frac{135}{4}}{-6\sqrt{5}} as a single fraction.
\frac{-135\sqrt{5}}{4\left(-6\right)\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{-135}{4\left(-6\right)\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{-135\sqrt{5}}{4\left(-6\right)\times 5}
The square of \sqrt{5} is 5.
\frac{-9\sqrt{5}}{-2\times 4}
Cancel out 3\times 5 in both numerator and denominator.
\frac{-9\sqrt{5}}{-8}
Multiply -2 and 4 to get -8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}