Evaluate
\frac{15}{4}=3.75
Factor
\frac{3 \cdot 5}{2 ^ {2}} = 3\frac{3}{4} = 3.75
Share
Copied to clipboard
\frac{6\times 5\sqrt{3}\left(-\frac{3}{2}\right)\sqrt{\frac{3\times 4+3}{4}}}{-9\sqrt{20}}
Factor 75=5^{2}\times 3. Rewrite the square root of the product \sqrt{5^{2}\times 3} as the product of square roots \sqrt{5^{2}}\sqrt{3}. Take the square root of 5^{2}.
\frac{30\sqrt{3}\left(-\frac{3}{2}\right)\sqrt{\frac{3\times 4+3}{4}}}{-9\sqrt{20}}
Multiply 6 and 5 to get 30.
\frac{\frac{30\left(-3\right)}{2}\sqrt{3}\sqrt{\frac{3\times 4+3}{4}}}{-9\sqrt{20}}
Express 30\left(-\frac{3}{2}\right) as a single fraction.
\frac{\frac{-90}{2}\sqrt{3}\sqrt{\frac{3\times 4+3}{4}}}{-9\sqrt{20}}
Multiply 30 and -3 to get -90.
\frac{-45\sqrt{3}\sqrt{\frac{3\times 4+3}{4}}}{-9\sqrt{20}}
Divide -90 by 2 to get -45.
\frac{-45\sqrt{3}\sqrt{\frac{12+3}{4}}}{-9\sqrt{20}}
Multiply 3 and 4 to get 12.
\frac{-45\sqrt{3}\sqrt{\frac{15}{4}}}{-9\sqrt{20}}
Add 12 and 3 to get 15.
\frac{-45\sqrt{3}\times \frac{\sqrt{15}}{\sqrt{4}}}{-9\sqrt{20}}
Rewrite the square root of the division \sqrt{\frac{15}{4}} as the division of square roots \frac{\sqrt{15}}{\sqrt{4}}.
\frac{-45\sqrt{3}\times \frac{\sqrt{15}}{2}}{-9\sqrt{20}}
Calculate the square root of 4 and get 2.
\frac{\frac{-45\sqrt{15}}{2}\sqrt{3}}{-9\sqrt{20}}
Express -45\times \frac{\sqrt{15}}{2} as a single fraction.
\frac{\frac{-45\sqrt{15}}{2}\sqrt{3}}{-9\times 2\sqrt{5}}
Factor 20=2^{2}\times 5. Rewrite the square root of the product \sqrt{2^{2}\times 5} as the product of square roots \sqrt{2^{2}}\sqrt{5}. Take the square root of 2^{2}.
\frac{\frac{-45\sqrt{15}}{2}\sqrt{3}}{-18\sqrt{5}}
Multiply -9 and 2 to get -18.
\frac{\frac{-45\sqrt{15}}{2}\sqrt{3}\sqrt{5}}{-18\left(\sqrt{5}\right)^{2}}
Rationalize the denominator of \frac{\frac{-45\sqrt{15}}{2}\sqrt{3}}{-18\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{\frac{-45\sqrt{15}}{2}\sqrt{3}\sqrt{5}}{-18\times 5}
The square of \sqrt{5} is 5.
\frac{\frac{-45\sqrt{15}\sqrt{3}}{2}\sqrt{5}}{-18\times 5}
Express \frac{-45\sqrt{15}}{2}\sqrt{3} as a single fraction.
\frac{\frac{-45\sqrt{15}\sqrt{3}\sqrt{5}}{2}}{-18\times 5}
Express \frac{-45\sqrt{15}\sqrt{3}}{2}\sqrt{5} as a single fraction.
\frac{\frac{-45\sqrt{15}\sqrt{3}\sqrt{5}}{2}}{-90}
Multiply -18 and 5 to get -90.
\frac{-45\sqrt{15}\sqrt{3}\sqrt{5}}{2\left(-90\right)}
Express \frac{\frac{-45\sqrt{15}\sqrt{3}\sqrt{5}}{2}}{-90} as a single fraction.
\frac{-\sqrt{3}\sqrt{5}\sqrt{15}}{-2\times 2}
Cancel out 45 in both numerator and denominator.
\frac{\sqrt{3}\sqrt{5}\sqrt{15}}{2\times 2}
Cancel out -1 in both numerator and denominator.
\frac{\sqrt{3}\sqrt{5}\sqrt{3}\sqrt{5}}{2\times 2}
Factor 15=3\times 5. Rewrite the square root of the product \sqrt{3\times 5} as the product of square roots \sqrt{3}\sqrt{5}.
\frac{3\sqrt{5}\sqrt{5}}{2\times 2}
Multiply \sqrt{3} and \sqrt{3} to get 3.
\frac{3\times 5}{2\times 2}
Multiply \sqrt{5} and \sqrt{5} to get 5.
\frac{15}{2\times 2}
Multiply 3 and 5 to get 15.
\frac{15}{4}
Multiply 2 and 2 to get 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}