Solve for m
m=\frac{25t^{2}}{72}+\frac{n}{2}
t\geq 0
Solve for n
n=-\frac{25t^{2}}{36}+2m
t\geq 0
Solve for m (complex solution)
m=\frac{25t^{2}}{72}+\frac{n}{2}
arg(t)<\pi \text{ or }t=0
Solve for n (complex solution)
n=-\frac{25t^{2}}{36}+2m
arg(t)<\pi \text{ or }t=0
Share
Copied to clipboard
\frac{6\sqrt{2m-n}}{6}=\frac{5t}{6}
Divide both sides by 6.
\sqrt{2m-n}=\frac{5t}{6}
Dividing by 6 undoes the multiplication by 6.
2m-n=\frac{25t^{2}}{36}
Square both sides of the equation.
2m-n-\left(-n\right)=\frac{25t^{2}}{36}-\left(-n\right)
Subtract -n from both sides of the equation.
2m=\frac{25t^{2}}{36}-\left(-n\right)
Subtracting -n from itself leaves 0.
2m=\frac{25t^{2}}{36}+n
Subtract -n from \frac{25t^{2}}{36}.
\frac{2m}{2}=\frac{\frac{25t^{2}}{36}+n}{2}
Divide both sides by 2.
m=\frac{\frac{25t^{2}}{36}+n}{2}
Dividing by 2 undoes the multiplication by 2.
m=\frac{25t^{2}}{72}+\frac{n}{2}
Divide \frac{25t^{2}}{36}+n by 2.
\frac{6\sqrt{-n+2m}}{6}=\frac{5t}{6}
Divide both sides by 6.
\sqrt{-n+2m}=\frac{5t}{6}
Dividing by 6 undoes the multiplication by 6.
-n+2m=\frac{25t^{2}}{36}
Square both sides of the equation.
-n+2m-2m=\frac{25t^{2}}{36}-2m
Subtract 2m from both sides of the equation.
-n=\frac{25t^{2}}{36}-2m
Subtracting 2m from itself leaves 0.
\frac{-n}{-1}=\frac{\frac{25t^{2}}{36}-2m}{-1}
Divide both sides by -1.
n=\frac{\frac{25t^{2}}{36}-2m}{-1}
Dividing by -1 undoes the multiplication by -1.
n=-\frac{25t^{2}}{36}+2m
Divide \frac{25t^{2}}{36}-2m by -1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}