Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{\left(10+6\sqrt{2}\right)\left(10-6\sqrt{2}\right)}
Rationalize the denominator of \frac{12}{10+6\sqrt{2}} by multiplying numerator and denominator by 10-6\sqrt{2}.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{10^{2}-\left(6\sqrt{2}\right)^{2}}
Consider \left(10+6\sqrt{2}\right)\left(10-6\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-\left(6\sqrt{2}\right)^{2}}
Calculate 10 to the power of 2 and get 100.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-6^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(6\sqrt{2}\right)^{2}.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-36\left(\sqrt{2}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-36\times 2}
The square of \sqrt{2} is 2.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-72}
Multiply 36 and 2 to get 72.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{28}
Subtract 72 from 100 to get 28.
6\sqrt{2}-6+\frac{3}{7}\left(10-6\sqrt{2}\right)
Divide 12\left(10-6\sqrt{2}\right) by 28 to get \frac{3}{7}\left(10-6\sqrt{2}\right).
6\sqrt{2}-6+\frac{3}{7}\times 10+\frac{3}{7}\left(-6\right)\sqrt{2}
Use the distributive property to multiply \frac{3}{7} by 10-6\sqrt{2}.
6\sqrt{2}-6+\frac{3\times 10}{7}+\frac{3}{7}\left(-6\right)\sqrt{2}
Express \frac{3}{7}\times 10 as a single fraction.
6\sqrt{2}-6+\frac{30}{7}+\frac{3}{7}\left(-6\right)\sqrt{2}
Multiply 3 and 10 to get 30.
6\sqrt{2}-6+\frac{30}{7}+\frac{3\left(-6\right)}{7}\sqrt{2}
Express \frac{3}{7}\left(-6\right) as a single fraction.
6\sqrt{2}-6+\frac{30}{7}+\frac{-18}{7}\sqrt{2}
Multiply 3 and -6 to get -18.
6\sqrt{2}-6+\frac{30}{7}-\frac{18}{7}\sqrt{2}
Fraction \frac{-18}{7} can be rewritten as -\frac{18}{7} by extracting the negative sign.
6\sqrt{2}-\frac{42}{7}+\frac{30}{7}-\frac{18}{7}\sqrt{2}
Convert -6 to fraction -\frac{42}{7}.
6\sqrt{2}+\frac{-42+30}{7}-\frac{18}{7}\sqrt{2}
Since -\frac{42}{7} and \frac{30}{7} have the same denominator, add them by adding their numerators.
6\sqrt{2}-\frac{12}{7}-\frac{18}{7}\sqrt{2}
Add -42 and 30 to get -12.
\frac{24}{7}\sqrt{2}-\frac{12}{7}
Combine 6\sqrt{2} and -\frac{18}{7}\sqrt{2} to get \frac{24}{7}\sqrt{2}.