Evaluate
\frac{24\sqrt{2}-12}{7}\approx 3.1344465
Factor
\frac{12 {(2 \sqrt{2} - 1)}}{7} = 3.134446499564898
Share
Copied to clipboard
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{\left(10+6\sqrt{2}\right)\left(10-6\sqrt{2}\right)}
Rationalize the denominator of \frac{12}{10+6\sqrt{2}} by multiplying numerator and denominator by 10-6\sqrt{2}.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{10^{2}-\left(6\sqrt{2}\right)^{2}}
Consider \left(10+6\sqrt{2}\right)\left(10-6\sqrt{2}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-\left(6\sqrt{2}\right)^{2}}
Calculate 10 to the power of 2 and get 100.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-6^{2}\left(\sqrt{2}\right)^{2}}
Expand \left(6\sqrt{2}\right)^{2}.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-36\left(\sqrt{2}\right)^{2}}
Calculate 6 to the power of 2 and get 36.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-36\times 2}
The square of \sqrt{2} is 2.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{100-72}
Multiply 36 and 2 to get 72.
6\sqrt{2}-6+\frac{12\left(10-6\sqrt{2}\right)}{28}
Subtract 72 from 100 to get 28.
6\sqrt{2}-6+\frac{3}{7}\left(10-6\sqrt{2}\right)
Divide 12\left(10-6\sqrt{2}\right) by 28 to get \frac{3}{7}\left(10-6\sqrt{2}\right).
6\sqrt{2}-6+\frac{3}{7}\times 10+\frac{3}{7}\left(-6\right)\sqrt{2}
Use the distributive property to multiply \frac{3}{7} by 10-6\sqrt{2}.
6\sqrt{2}-6+\frac{3\times 10}{7}+\frac{3}{7}\left(-6\right)\sqrt{2}
Express \frac{3}{7}\times 10 as a single fraction.
6\sqrt{2}-6+\frac{30}{7}+\frac{3}{7}\left(-6\right)\sqrt{2}
Multiply 3 and 10 to get 30.
6\sqrt{2}-6+\frac{30}{7}+\frac{3\left(-6\right)}{7}\sqrt{2}
Express \frac{3}{7}\left(-6\right) as a single fraction.
6\sqrt{2}-6+\frac{30}{7}+\frac{-18}{7}\sqrt{2}
Multiply 3 and -6 to get -18.
6\sqrt{2}-6+\frac{30}{7}-\frac{18}{7}\sqrt{2}
Fraction \frac{-18}{7} can be rewritten as -\frac{18}{7} by extracting the negative sign.
6\sqrt{2}-\frac{42}{7}+\frac{30}{7}-\frac{18}{7}\sqrt{2}
Convert -6 to fraction -\frac{42}{7}.
6\sqrt{2}+\frac{-42+30}{7}-\frac{18}{7}\sqrt{2}
Since -\frac{42}{7} and \frac{30}{7} have the same denominator, add them by adding their numerators.
6\sqrt{2}-\frac{12}{7}-\frac{18}{7}\sqrt{2}
Add -42 and 30 to get -12.
\frac{24}{7}\sqrt{2}-\frac{12}{7}
Combine 6\sqrt{2} and -\frac{18}{7}\sqrt{2} to get \frac{24}{7}\sqrt{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}