Evaluate
\frac{8\sqrt{5}+12\sqrt{10}}{5}\approx 11.167175148
Factor
\frac{4 {(2 \sqrt{5} + 3 \sqrt{10})}}{5} = 11.167175148403775
Share
Copied to clipboard
6\sqrt{\frac{5+3}{5}}+\frac{4\sqrt{\frac{2\times 5+2}{5}}}{2}\sqrt{\frac{1\times 3+1}{3}}
Multiply 1 and 5 to get 5.
6\sqrt{\frac{8}{5}}+\frac{4\sqrt{\frac{2\times 5+2}{5}}}{2}\sqrt{\frac{1\times 3+1}{3}}
Add 5 and 3 to get 8.
6\times \frac{\sqrt{8}}{\sqrt{5}}+\frac{4\sqrt{\frac{2\times 5+2}{5}}}{2}\sqrt{\frac{1\times 3+1}{3}}
Rewrite the square root of the division \sqrt{\frac{8}{5}} as the division of square roots \frac{\sqrt{8}}{\sqrt{5}}.
6\times \frac{2\sqrt{2}}{\sqrt{5}}+\frac{4\sqrt{\frac{2\times 5+2}{5}}}{2}\sqrt{\frac{1\times 3+1}{3}}
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
6\times \frac{2\sqrt{2}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}+\frac{4\sqrt{\frac{2\times 5+2}{5}}}{2}\sqrt{\frac{1\times 3+1}{3}}
Rationalize the denominator of \frac{2\sqrt{2}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
6\times \frac{2\sqrt{2}\sqrt{5}}{5}+\frac{4\sqrt{\frac{2\times 5+2}{5}}}{2}\sqrt{\frac{1\times 3+1}{3}}
The square of \sqrt{5} is 5.
6\times \frac{2\sqrt{10}}{5}+\frac{4\sqrt{\frac{2\times 5+2}{5}}}{2}\sqrt{\frac{1\times 3+1}{3}}
To multiply \sqrt{2} and \sqrt{5}, multiply the numbers under the square root.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\sqrt{\frac{2\times 5+2}{5}}}{2}\sqrt{\frac{1\times 3+1}{3}}
Express 6\times \frac{2\sqrt{10}}{5} as a single fraction.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\sqrt{\frac{10+2}{5}}}{2}\sqrt{\frac{1\times 3+1}{3}}
Multiply 2 and 5 to get 10.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\sqrt{\frac{12}{5}}}{2}\sqrt{\frac{1\times 3+1}{3}}
Add 10 and 2 to get 12.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\times \frac{\sqrt{12}}{\sqrt{5}}}{2}\sqrt{\frac{1\times 3+1}{3}}
Rewrite the square root of the division \sqrt{\frac{12}{5}} as the division of square roots \frac{\sqrt{12}}{\sqrt{5}}.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\times \frac{2\sqrt{3}}{\sqrt{5}}}{2}\sqrt{\frac{1\times 3+1}{3}}
Factor 12=2^{2}\times 3. Rewrite the square root of the product \sqrt{2^{2}\times 3} as the product of square roots \sqrt{2^{2}}\sqrt{3}. Take the square root of 2^{2}.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\times \frac{2\sqrt{3}\sqrt{5}}{\left(\sqrt{5}\right)^{2}}}{2}\sqrt{\frac{1\times 3+1}{3}}
Rationalize the denominator of \frac{2\sqrt{3}}{\sqrt{5}} by multiplying numerator and denominator by \sqrt{5}.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\times \frac{2\sqrt{3}\sqrt{5}}{5}}{2}\sqrt{\frac{1\times 3+1}{3}}
The square of \sqrt{5} is 5.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\times \frac{2\sqrt{15}}{5}}{2}\sqrt{\frac{1\times 3+1}{3}}
To multiply \sqrt{3} and \sqrt{5}, multiply the numbers under the square root.
\frac{6\times 2\sqrt{10}}{5}+\frac{\frac{4\times 2\sqrt{15}}{5}}{2}\sqrt{\frac{1\times 3+1}{3}}
Express 4\times \frac{2\sqrt{15}}{5} as a single fraction.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\times 2\sqrt{15}}{5\times 2}\sqrt{\frac{1\times 3+1}{3}}
Express \frac{\frac{4\times 2\sqrt{15}}{5}}{2} as a single fraction.
\frac{6\times 2\sqrt{10}}{5}+\frac{2\times 2\sqrt{15}}{5}\sqrt{\frac{1\times 3+1}{3}}
Cancel out 2 in both numerator and denominator.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\sqrt{15}}{5}\sqrt{\frac{1\times 3+1}{3}}
Multiply 2 and 2 to get 4.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\sqrt{15}}{5}\sqrt{\frac{3+1}{3}}
Multiply 1 and 3 to get 3.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\sqrt{15}}{5}\sqrt{\frac{4}{3}}
Add 3 and 1 to get 4.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\sqrt{15}}{5}\times \frac{\sqrt{4}}{\sqrt{3}}
Rewrite the square root of the division \sqrt{\frac{4}{3}} as the division of square roots \frac{\sqrt{4}}{\sqrt{3}}.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\sqrt{15}}{5}\times \frac{2}{\sqrt{3}}
Calculate the square root of 4 and get 2.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\sqrt{15}}{5}\times \frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}
Rationalize the denominator of \frac{2}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\sqrt{15}}{5}\times \frac{2\sqrt{3}}{3}
The square of \sqrt{3} is 3.
\frac{6\times 2\sqrt{10}}{5}+\frac{4\sqrt{15}\times 2\sqrt{3}}{5\times 3}
Multiply \frac{4\sqrt{15}}{5} times \frac{2\sqrt{3}}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{3\times 6\times 2\sqrt{10}}{3\times 5}+\frac{4\sqrt{15}\times 2\sqrt{3}}{3\times 5}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 5 and 5\times 3 is 3\times 5. Multiply \frac{6\times 2\sqrt{10}}{5} times \frac{3}{3}.
\frac{3\times 6\times 2\sqrt{10}+4\sqrt{15}\times 2\sqrt{3}}{3\times 5}
Since \frac{3\times 6\times 2\sqrt{10}}{3\times 5} and \frac{4\sqrt{15}\times 2\sqrt{3}}{3\times 5} have the same denominator, add them by adding their numerators.
\frac{36\sqrt{10}+24\sqrt{5}}{3\times 5}
Do the multiplications in 3\times 6\times 2\sqrt{10}+4\sqrt{15}\times 2\sqrt{3}.
\frac{36\sqrt{10}+24\sqrt{5}}{15}
Expand 3\times 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}