Evaluate
\frac{61}{24}\approx 2.541666667
Factor
\frac{61}{2 ^ {3} \cdot 3} = 2\frac{13}{24} = 2.5416666666666665
Share
Copied to clipboard
\frac{48+7}{8}-\frac{4\times 3+1}{3}
Multiply 6 and 8 to get 48.
\frac{55}{8}-\frac{4\times 3+1}{3}
Add 48 and 7 to get 55.
\frac{55}{8}-\frac{12+1}{3}
Multiply 4 and 3 to get 12.
\frac{55}{8}-\frac{13}{3}
Add 12 and 1 to get 13.
\frac{165}{24}-\frac{104}{24}
Least common multiple of 8 and 3 is 24. Convert \frac{55}{8} and \frac{13}{3} to fractions with denominator 24.
\frac{165-104}{24}
Since \frac{165}{24} and \frac{104}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{61}{24}
Subtract 104 from 165 to get 61.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}