Solve for c
c = \frac{3061}{9} = 340\frac{1}{9} \approx 340.111111111
Share
Copied to clipboard
6\times 9+1=9\sqrt{\frac{c-2^{2}}{9}}
Multiply both sides of the equation by 9.
54+1=9\sqrt{\frac{c-2^{2}}{9}}
Multiply 6 and 9 to get 54.
55=9\sqrt{\frac{c-2^{2}}{9}}
Add 54 and 1 to get 55.
55=9\sqrt{\frac{c-4}{9}}
Calculate 2 to the power of 2 and get 4.
55=9\sqrt{\frac{1}{9}c-\frac{4}{9}}
Divide each term of c-4 by 9 to get \frac{1}{9}c-\frac{4}{9}.
9\sqrt{\frac{1}{9}c-\frac{4}{9}}=55
Swap sides so that all variable terms are on the left hand side.
\sqrt{\frac{1}{9}c-\frac{4}{9}}=\frac{55}{9}
Divide both sides by 9.
\frac{1}{9}c-\frac{4}{9}=\frac{3025}{81}
Square both sides of the equation.
\frac{1}{9}c-\frac{4}{9}-\left(-\frac{4}{9}\right)=\frac{3025}{81}-\left(-\frac{4}{9}\right)
Add \frac{4}{9} to both sides of the equation.
\frac{1}{9}c=\frac{3025}{81}-\left(-\frac{4}{9}\right)
Subtracting -\frac{4}{9} from itself leaves 0.
\frac{1}{9}c=\frac{3061}{81}
Subtract -\frac{4}{9} from \frac{3025}{81} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
\frac{\frac{1}{9}c}{\frac{1}{9}}=\frac{\frac{3061}{81}}{\frac{1}{9}}
Multiply both sides by 9.
c=\frac{\frac{3061}{81}}{\frac{1}{9}}
Dividing by \frac{1}{9} undoes the multiplication by \frac{1}{9}.
c=\frac{3061}{9}
Divide \frac{3061}{81} by \frac{1}{9} by multiplying \frac{3061}{81} by the reciprocal of \frac{1}{9}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}