Evaluate
-10\sqrt{21}-55\approx -100.82575695
Share
Copied to clipboard
6\times \frac{\sqrt{21}}{\sqrt{9}}-\left(2\sqrt{7}+3\sqrt{3}\right)^{2}
Calculate 3 to the power of 2 and get 9.
6\times \frac{\sqrt{21}}{3}-\left(2\sqrt{7}+3\sqrt{3}\right)^{2}
Calculate the square root of 9 and get 3.
2\sqrt{21}-\left(2\sqrt{7}+3\sqrt{3}\right)^{2}
Cancel out 3, the greatest common factor in 6 and 3.
2\sqrt{21}-\left(4\left(\sqrt{7}\right)^{2}+12\sqrt{7}\sqrt{3}+9\left(\sqrt{3}\right)^{2}\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2\sqrt{7}+3\sqrt{3}\right)^{2}.
2\sqrt{21}-\left(4\times 7+12\sqrt{7}\sqrt{3}+9\left(\sqrt{3}\right)^{2}\right)
The square of \sqrt{7} is 7.
2\sqrt{21}-\left(28+12\sqrt{7}\sqrt{3}+9\left(\sqrt{3}\right)^{2}\right)
Multiply 4 and 7 to get 28.
2\sqrt{21}-\left(28+12\sqrt{21}+9\left(\sqrt{3}\right)^{2}\right)
To multiply \sqrt{7} and \sqrt{3}, multiply the numbers under the square root.
2\sqrt{21}-\left(28+12\sqrt{21}+9\times 3\right)
The square of \sqrt{3} is 3.
2\sqrt{21}-\left(28+12\sqrt{21}+27\right)
Multiply 9 and 3 to get 27.
2\sqrt{21}-\left(55+12\sqrt{21}\right)
Add 28 and 27 to get 55.
2\sqrt{21}-55-12\sqrt{21}
To find the opposite of 55+12\sqrt{21}, find the opposite of each term.
-10\sqrt{21}-55
Combine 2\sqrt{21} and -12\sqrt{21} to get -10\sqrt{21}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}