Evaluate
\frac{121}{45}\approx 2.688888889
Factor
\frac{11 ^ {2}}{3 ^ {2} \cdot 5} = 2\frac{31}{45} = 2.688888888888889
Share
Copied to clipboard
\frac{216+25}{36}-\frac{4\times 3+7}{3}-\frac{38}{90}+\frac{2\times 4+3}{4}
Multiply 6 and 36 to get 216.
\frac{241}{36}-\frac{4\times 3+7}{3}-\frac{38}{90}+\frac{2\times 4+3}{4}
Add 216 and 25 to get 241.
\frac{241}{36}-\frac{12+7}{3}-\frac{38}{90}+\frac{2\times 4+3}{4}
Multiply 4 and 3 to get 12.
\frac{241}{36}-\frac{19}{3}-\frac{38}{90}+\frac{2\times 4+3}{4}
Add 12 and 7 to get 19.
\frac{241}{36}-\frac{228}{36}-\frac{38}{90}+\frac{2\times 4+3}{4}
Least common multiple of 36 and 3 is 36. Convert \frac{241}{36} and \frac{19}{3} to fractions with denominator 36.
\frac{241-228}{36}-\frac{38}{90}+\frac{2\times 4+3}{4}
Since \frac{241}{36} and \frac{228}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{13}{36}-\frac{38}{90}+\frac{2\times 4+3}{4}
Subtract 228 from 241 to get 13.
\frac{13}{36}-\frac{19}{45}+\frac{2\times 4+3}{4}
Reduce the fraction \frac{38}{90} to lowest terms by extracting and canceling out 2.
\frac{65}{180}-\frac{76}{180}+\frac{2\times 4+3}{4}
Least common multiple of 36 and 45 is 180. Convert \frac{13}{36} and \frac{19}{45} to fractions with denominator 180.
\frac{65-76}{180}+\frac{2\times 4+3}{4}
Since \frac{65}{180} and \frac{76}{180} have the same denominator, subtract them by subtracting their numerators.
-\frac{11}{180}+\frac{2\times 4+3}{4}
Subtract 76 from 65 to get -11.
-\frac{11}{180}+\frac{8+3}{4}
Multiply 2 and 4 to get 8.
-\frac{11}{180}+\frac{11}{4}
Add 8 and 3 to get 11.
-\frac{11}{180}+\frac{495}{180}
Least common multiple of 180 and 4 is 180. Convert -\frac{11}{180} and \frac{11}{4} to fractions with denominator 180.
\frac{-11+495}{180}
Since -\frac{11}{180} and \frac{495}{180} have the same denominator, add them by adding their numerators.
\frac{484}{180}
Add -11 and 495 to get 484.
\frac{121}{45}
Reduce the fraction \frac{484}{180} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}