Evaluate
\frac{41}{15}\approx 2.733333333
Factor
\frac{41}{3 \cdot 5} = 2\frac{11}{15} = 2.7333333333333334
Share
Copied to clipboard
\frac{30+2}{5}-\frac{3\times 3+2}{3}
Multiply 6 and 5 to get 30.
\frac{32}{5}-\frac{3\times 3+2}{3}
Add 30 and 2 to get 32.
\frac{32}{5}-\frac{9+2}{3}
Multiply 3 and 3 to get 9.
\frac{32}{5}-\frac{11}{3}
Add 9 and 2 to get 11.
\frac{96}{15}-\frac{55}{15}
Least common multiple of 5 and 3 is 15. Convert \frac{32}{5} and \frac{11}{3} to fractions with denominator 15.
\frac{96-55}{15}
Since \frac{96}{15} and \frac{55}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{41}{15}
Subtract 55 from 96 to get 41.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}