Evaluate
\frac{143}{15}\approx 9.533333333
Factor
\frac{11 \cdot 13}{3 \cdot 5} = 9\frac{8}{15} = 9.533333333333333
Share
Copied to clipboard
\frac{30+2}{5}+\frac{3\times 3+1}{3}+\frac{1}{2}-\frac{7}{10}
Multiply 6 and 5 to get 30.
\frac{32}{5}+\frac{3\times 3+1}{3}+\frac{1}{2}-\frac{7}{10}
Add 30 and 2 to get 32.
\frac{32}{5}+\frac{9+1}{3}+\frac{1}{2}-\frac{7}{10}
Multiply 3 and 3 to get 9.
\frac{32}{5}+\frac{10}{3}+\frac{1}{2}-\frac{7}{10}
Add 9 and 1 to get 10.
\frac{96}{15}+\frac{50}{15}+\frac{1}{2}-\frac{7}{10}
Least common multiple of 5 and 3 is 15. Convert \frac{32}{5} and \frac{10}{3} to fractions with denominator 15.
\frac{96+50}{15}+\frac{1}{2}-\frac{7}{10}
Since \frac{96}{15} and \frac{50}{15} have the same denominator, add them by adding their numerators.
\frac{146}{15}+\frac{1}{2}-\frac{7}{10}
Add 96 and 50 to get 146.
\frac{292}{30}+\frac{15}{30}-\frac{7}{10}
Least common multiple of 15 and 2 is 30. Convert \frac{146}{15} and \frac{1}{2} to fractions with denominator 30.
\frac{292+15}{30}-\frac{7}{10}
Since \frac{292}{30} and \frac{15}{30} have the same denominator, add them by adding their numerators.
\frac{307}{30}-\frac{7}{10}
Add 292 and 15 to get 307.
\frac{307}{30}-\frac{21}{30}
Least common multiple of 30 and 10 is 30. Convert \frac{307}{30} and \frac{7}{10} to fractions with denominator 30.
\frac{307-21}{30}
Since \frac{307}{30} and \frac{21}{30} have the same denominator, subtract them by subtracting their numerators.
\frac{286}{30}
Subtract 21 from 307 to get 286.
\frac{143}{15}
Reduce the fraction \frac{286}{30} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}