Evaluate
-\frac{9}{8}=-1.125
Factor
-\frac{9}{8} = -1\frac{1}{8} = -1.125
Share
Copied to clipboard
\frac{18+2}{3}-\left(-\frac{3\times 4+3}{4}\right)-\frac{2\times 6+5}{6}-\frac{5\times 8+3}{8}-\frac{3\times 3+1}{3}
Multiply 6 and 3 to get 18.
\frac{20}{3}-\left(-\frac{3\times 4+3}{4}\right)-\frac{2\times 6+5}{6}-\frac{5\times 8+3}{8}-\frac{3\times 3+1}{3}
Add 18 and 2 to get 20.
\frac{20}{3}-\left(-\frac{12+3}{4}\right)-\frac{2\times 6+5}{6}-\frac{5\times 8+3}{8}-\frac{3\times 3+1}{3}
Multiply 3 and 4 to get 12.
\frac{20}{3}-\left(-\frac{15}{4}\right)-\frac{2\times 6+5}{6}-\frac{5\times 8+3}{8}-\frac{3\times 3+1}{3}
Add 12 and 3 to get 15.
\frac{20}{3}+\frac{15}{4}-\frac{2\times 6+5}{6}-\frac{5\times 8+3}{8}-\frac{3\times 3+1}{3}
The opposite of -\frac{15}{4} is \frac{15}{4}.
\frac{80}{12}+\frac{45}{12}-\frac{2\times 6+5}{6}-\frac{5\times 8+3}{8}-\frac{3\times 3+1}{3}
Least common multiple of 3 and 4 is 12. Convert \frac{20}{3} and \frac{15}{4} to fractions with denominator 12.
\frac{80+45}{12}-\frac{2\times 6+5}{6}-\frac{5\times 8+3}{8}-\frac{3\times 3+1}{3}
Since \frac{80}{12} and \frac{45}{12} have the same denominator, add them by adding their numerators.
\frac{125}{12}-\frac{2\times 6+5}{6}-\frac{5\times 8+3}{8}-\frac{3\times 3+1}{3}
Add 80 and 45 to get 125.
\frac{125}{12}-\frac{12+5}{6}-\frac{5\times 8+3}{8}-\frac{3\times 3+1}{3}
Multiply 2 and 6 to get 12.
\frac{125}{12}-\frac{17}{6}-\frac{5\times 8+3}{8}-\frac{3\times 3+1}{3}
Add 12 and 5 to get 17.
\frac{125}{12}-\frac{34}{12}-\frac{5\times 8+3}{8}-\frac{3\times 3+1}{3}
Least common multiple of 12 and 6 is 12. Convert \frac{125}{12} and \frac{17}{6} to fractions with denominator 12.
\frac{125-34}{12}-\frac{5\times 8+3}{8}-\frac{3\times 3+1}{3}
Since \frac{125}{12} and \frac{34}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{91}{12}-\frac{5\times 8+3}{8}-\frac{3\times 3+1}{3}
Subtract 34 from 125 to get 91.
\frac{91}{12}-\frac{40+3}{8}-\frac{3\times 3+1}{3}
Multiply 5 and 8 to get 40.
\frac{91}{12}-\frac{43}{8}-\frac{3\times 3+1}{3}
Add 40 and 3 to get 43.
\frac{182}{24}-\frac{129}{24}-\frac{3\times 3+1}{3}
Least common multiple of 12 and 8 is 24. Convert \frac{91}{12} and \frac{43}{8} to fractions with denominator 24.
\frac{182-129}{24}-\frac{3\times 3+1}{3}
Since \frac{182}{24} and \frac{129}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{53}{24}-\frac{3\times 3+1}{3}
Subtract 129 from 182 to get 53.
\frac{53}{24}-\frac{9+1}{3}
Multiply 3 and 3 to get 9.
\frac{53}{24}-\frac{10}{3}
Add 9 and 1 to get 10.
\frac{53}{24}-\frac{80}{24}
Least common multiple of 24 and 3 is 24. Convert \frac{53}{24} and \frac{10}{3} to fractions with denominator 24.
\frac{53-80}{24}
Since \frac{53}{24} and \frac{80}{24} have the same denominator, subtract them by subtracting their numerators.
\frac{-27}{24}
Subtract 80 from 53 to get -27.
-\frac{9}{8}
Reduce the fraction \frac{-27}{24} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}