Evaluate
\frac{131}{22}\approx 5.954545455
Factor
\frac{131}{2 \cdot 11} = 5\frac{21}{22} = 5.954545454545454
Share
Copied to clipboard
\frac{132+13}{22}+\frac{\frac{5\times 11+5}{11}}{-4}-\frac{\frac{5}{132}}{-\frac{1}{6}}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Multiply 6 and 22 to get 132.
\frac{145}{22}+\frac{\frac{5\times 11+5}{11}}{-4}-\frac{\frac{5}{132}}{-\frac{1}{6}}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Add 132 and 13 to get 145.
\frac{145}{22}+\frac{5\times 11+5}{11\left(-4\right)}-\frac{\frac{5}{132}}{-\frac{1}{6}}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Express \frac{\frac{5\times 11+5}{11}}{-4} as a single fraction.
\frac{145}{22}+\frac{55+5}{11\left(-4\right)}-\frac{\frac{5}{132}}{-\frac{1}{6}}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Multiply 5 and 11 to get 55.
\frac{145}{22}+\frac{60}{11\left(-4\right)}-\frac{\frac{5}{132}}{-\frac{1}{6}}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Add 55 and 5 to get 60.
\frac{145}{22}+\frac{60}{-44}-\frac{\frac{5}{132}}{-\frac{1}{6}}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Multiply 11 and -4 to get -44.
\frac{145}{22}-\frac{15}{11}-\frac{\frac{5}{132}}{-\frac{1}{6}}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Reduce the fraction \frac{60}{-44} to lowest terms by extracting and canceling out 4.
\frac{145}{22}-\frac{30}{22}-\frac{\frac{5}{132}}{-\frac{1}{6}}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Least common multiple of 22 and 11 is 22. Convert \frac{145}{22} and \frac{15}{11} to fractions with denominator 22.
\frac{145-30}{22}-\frac{\frac{5}{132}}{-\frac{1}{6}}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Since \frac{145}{22} and \frac{30}{22} have the same denominator, subtract them by subtracting their numerators.
\frac{115}{22}-\frac{\frac{5}{132}}{-\frac{1}{6}}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Subtract 30 from 145 to get 115.
\frac{115}{22}-\frac{5}{132}\left(-6\right)+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Divide \frac{5}{132} by -\frac{1}{6} by multiplying \frac{5}{132} by the reciprocal of -\frac{1}{6}.
\frac{115}{22}-\frac{5\left(-6\right)}{132}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Express \frac{5}{132}\left(-6\right) as a single fraction.
\frac{115}{22}-\frac{-30}{132}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Multiply 5 and -6 to get -30.
\frac{115}{22}-\left(-\frac{5}{22}\right)+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Reduce the fraction \frac{-30}{132} to lowest terms by extracting and canceling out 6.
\frac{115}{22}+\frac{5}{22}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
The opposite of -\frac{5}{22} is \frac{5}{22}.
\frac{115+5}{22}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Since \frac{115}{22} and \frac{5}{22} have the same denominator, add them by adding their numerators.
\frac{120}{22}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Add 115 and 5 to get 120.
\frac{60}{11}+\frac{\left(-\frac{5}{6}\right)^{2}}{\frac{1\times 18+7}{18}}
Reduce the fraction \frac{120}{22} to lowest terms by extracting and canceling out 2.
\frac{60}{11}+\frac{\frac{25}{36}}{\frac{1\times 18+7}{18}}
Calculate -\frac{5}{6} to the power of 2 and get \frac{25}{36}.
\frac{60}{11}+\frac{\frac{25}{36}}{\frac{18+7}{18}}
Multiply 1 and 18 to get 18.
\frac{60}{11}+\frac{\frac{25}{36}}{\frac{25}{18}}
Add 18 and 7 to get 25.
\frac{60}{11}+\frac{25}{36}\times \frac{18}{25}
Divide \frac{25}{36} by \frac{25}{18} by multiplying \frac{25}{36} by the reciprocal of \frac{25}{18}.
\frac{60}{11}+\frac{25\times 18}{36\times 25}
Multiply \frac{25}{36} times \frac{18}{25} by multiplying numerator times numerator and denominator times denominator.
\frac{60}{11}+\frac{18}{36}
Cancel out 25 in both numerator and denominator.
\frac{60}{11}+\frac{1}{2}
Reduce the fraction \frac{18}{36} to lowest terms by extracting and canceling out 18.
\frac{120}{22}+\frac{11}{22}
Least common multiple of 11 and 2 is 22. Convert \frac{60}{11} and \frac{1}{2} to fractions with denominator 22.
\frac{120+11}{22}
Since \frac{120}{22} and \frac{11}{22} have the same denominator, add them by adding their numerators.
\frac{131}{22}
Add 120 and 11 to get 131.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}