Evaluate
1
Factor
1
Share
Copied to clipboard
\frac{72+11}{12}-\left(\frac{2\times 16+4}{16}+\frac{3\times 3+2}{3}\right)
Multiply 6 and 12 to get 72.
\frac{83}{12}-\left(\frac{2\times 16+4}{16}+\frac{3\times 3+2}{3}\right)
Add 72 and 11 to get 83.
\frac{83}{12}-\left(\frac{32+4}{16}+\frac{3\times 3+2}{3}\right)
Multiply 2 and 16 to get 32.
\frac{83}{12}-\left(\frac{36}{16}+\frac{3\times 3+2}{3}\right)
Add 32 and 4 to get 36.
\frac{83}{12}-\left(\frac{9}{4}+\frac{3\times 3+2}{3}\right)
Reduce the fraction \frac{36}{16} to lowest terms by extracting and canceling out 4.
\frac{83}{12}-\left(\frac{9}{4}+\frac{9+2}{3}\right)
Multiply 3 and 3 to get 9.
\frac{83}{12}-\left(\frac{9}{4}+\frac{11}{3}\right)
Add 9 and 2 to get 11.
\frac{83}{12}-\left(\frac{27}{12}+\frac{44}{12}\right)
Least common multiple of 4 and 3 is 12. Convert \frac{9}{4} and \frac{11}{3} to fractions with denominator 12.
\frac{83}{12}-\frac{27+44}{12}
Since \frac{27}{12} and \frac{44}{12} have the same denominator, add them by adding their numerators.
\frac{83}{12}-\frac{71}{12}
Add 27 and 44 to get 71.
\frac{83-71}{12}
Since \frac{83}{12} and \frac{71}{12} have the same denominator, subtract them by subtracting their numerators.
\frac{12}{12}
Subtract 71 from 83 to get 12.
1
Divide 12 by 12 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}