Evaluate
\frac{57}{20}=2.85
Factor
\frac{3 \cdot 19}{2 ^ {2} \cdot 5} = 2\frac{17}{20} = 2.85
Share
Copied to clipboard
\frac{24+1}{4}-\left(\frac{3\times 5+2}{5}-\frac{2\times 20+5}{20}\right)-\frac{4\times 10+5}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Multiply 6 and 4 to get 24.
\frac{25}{4}-\left(\frac{3\times 5+2}{5}-\frac{2\times 20+5}{20}\right)-\frac{4\times 10+5}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Add 24 and 1 to get 25.
\frac{25}{4}-\left(\frac{15+2}{5}-\frac{2\times 20+5}{20}\right)-\frac{4\times 10+5}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Multiply 3 and 5 to get 15.
\frac{25}{4}-\left(\frac{17}{5}-\frac{2\times 20+5}{20}\right)-\frac{4\times 10+5}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Add 15 and 2 to get 17.
\frac{25}{4}-\left(\frac{17}{5}-\frac{40+5}{20}\right)-\frac{4\times 10+5}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Multiply 2 and 20 to get 40.
\frac{25}{4}-\left(\frac{17}{5}-\frac{45}{20}\right)-\frac{4\times 10+5}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Add 40 and 5 to get 45.
\frac{25}{4}-\left(\frac{17}{5}-\frac{9}{4}\right)-\frac{4\times 10+5}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Reduce the fraction \frac{45}{20} to lowest terms by extracting and canceling out 5.
\frac{25}{4}-\left(\frac{68}{20}-\frac{45}{20}\right)-\frac{4\times 10+5}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Least common multiple of 5 and 4 is 20. Convert \frac{17}{5} and \frac{9}{4} to fractions with denominator 20.
\frac{25}{4}-\frac{68-45}{20}-\frac{4\times 10+5}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Since \frac{68}{20} and \frac{45}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{25}{4}-\frac{23}{20}-\frac{4\times 10+5}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Subtract 45 from 68 to get 23.
\frac{125}{20}-\frac{23}{20}-\frac{4\times 10+5}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Least common multiple of 4 and 20 is 20. Convert \frac{25}{4} and \frac{23}{20} to fractions with denominator 20.
\frac{125-23}{20}-\frac{4\times 10+5}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Since \frac{125}{20} and \frac{23}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{102}{20}-\frac{4\times 10+5}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Subtract 23 from 125 to get 102.
\frac{51}{10}-\frac{4\times 10+5}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Reduce the fraction \frac{102}{20} to lowest terms by extracting and canceling out 2.
\frac{51}{10}-\frac{40+5}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Multiply 4 and 10 to get 40.
\frac{51}{10}-\frac{45}{10}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Add 40 and 5 to get 45.
\frac{51}{10}-\frac{9}{2}\left(\frac{1\times 4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Reduce the fraction \frac{45}{10} to lowest terms by extracting and canceling out 5.
\frac{51}{10}-\frac{9}{2}\left(\frac{4+5}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Multiply 1 and 4 to get 4.
\frac{51}{10}-\frac{9}{2}\left(\frac{9}{4}+\frac{2\times 20+3}{20}-\frac{3\times 10+9}{10}\right)
Add 4 and 5 to get 9.
\frac{51}{10}-\frac{9}{2}\left(\frac{9}{4}+\frac{40+3}{20}-\frac{3\times 10+9}{10}\right)
Multiply 2 and 20 to get 40.
\frac{51}{10}-\frac{9}{2}\left(\frac{9}{4}+\frac{43}{20}-\frac{3\times 10+9}{10}\right)
Add 40 and 3 to get 43.
\frac{51}{10}-\frac{9}{2}\left(\frac{45}{20}+\frac{43}{20}-\frac{3\times 10+9}{10}\right)
Least common multiple of 4 and 20 is 20. Convert \frac{9}{4} and \frac{43}{20} to fractions with denominator 20.
\frac{51}{10}-\frac{9}{2}\left(\frac{45+43}{20}-\frac{3\times 10+9}{10}\right)
Since \frac{45}{20} and \frac{43}{20} have the same denominator, add them by adding their numerators.
\frac{51}{10}-\frac{9}{2}\left(\frac{88}{20}-\frac{3\times 10+9}{10}\right)
Add 45 and 43 to get 88.
\frac{51}{10}-\frac{9}{2}\left(\frac{22}{5}-\frac{3\times 10+9}{10}\right)
Reduce the fraction \frac{88}{20} to lowest terms by extracting and canceling out 4.
\frac{51}{10}-\frac{9}{2}\left(\frac{22}{5}-\frac{30+9}{10}\right)
Multiply 3 and 10 to get 30.
\frac{51}{10}-\frac{9}{2}\left(\frac{22}{5}-\frac{39}{10}\right)
Add 30 and 9 to get 39.
\frac{51}{10}-\frac{9}{2}\left(\frac{44}{10}-\frac{39}{10}\right)
Least common multiple of 5 and 10 is 10. Convert \frac{22}{5} and \frac{39}{10} to fractions with denominator 10.
\frac{51}{10}-\frac{9}{2}\times \frac{44-39}{10}
Since \frac{44}{10} and \frac{39}{10} have the same denominator, subtract them by subtracting their numerators.
\frac{51}{10}-\frac{9}{2}\times \frac{5}{10}
Subtract 39 from 44 to get 5.
\frac{51}{10}-\frac{9}{2}\times \frac{1}{2}
Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{51}{10}-\frac{9\times 1}{2\times 2}
Multiply \frac{9}{2} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{51}{10}-\frac{9}{4}
Do the multiplications in the fraction \frac{9\times 1}{2\times 2}.
\frac{102}{20}-\frac{45}{20}
Least common multiple of 10 and 4 is 20. Convert \frac{51}{10} and \frac{9}{4} to fractions with denominator 20.
\frac{102-45}{20}
Since \frac{102}{20} and \frac{45}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{57}{20}
Subtract 45 from 102 to get 57.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}