Solve for p (complex solution)
\left\{\begin{matrix}p=\frac{3\left(2x+1\right)}{x\left(x+5\right)n^{2}}\text{, }&n\neq 0\text{ and }x\neq 0\text{ and }x\neq -5\\p\in \mathrm{C}\text{, }&x=-\frac{1}{2}\text{ and }n=0\end{matrix}\right.
Solve for p
\left\{\begin{matrix}p=\frac{3\left(2x+1\right)}{x\left(x+5\right)n^{2}}\text{, }&n\neq 0\text{ and }x\neq 0\text{ and }x\neq -5\\p\in \mathrm{R}\text{, }&x=-\frac{1}{2}\text{ and }n=0\end{matrix}\right.
Solve for n (complex solution)
\left\{\begin{matrix}n=-ip^{-\frac{1}{2}}x^{-\frac{1}{2}}\left(x+5\right)^{-\frac{1}{2}}\sqrt{-6x-3}\text{; }n=ip^{-\frac{1}{2}}x^{-\frac{1}{2}}\left(x+5\right)^{-\frac{1}{2}}\sqrt{-6x-3}\text{, }&p\neq 0\text{ and }x\neq 0\text{ and }x\neq -5\\n\in \mathrm{C}\text{, }&x=-\frac{1}{2}\text{ and }p=0\end{matrix}\right.
Solve for n
\left\{\begin{matrix}n=\sqrt{\frac{3\left(2x+1\right)}{px\left(x+5\right)}}\text{; }n=-\sqrt{\frac{3\left(2x+1\right)}{px\left(x+5\right)}}\text{, }&\left(x<-5\text{ and }p<0\right)\text{ or }\left(p>0\text{ and }x>0\right)\text{ or }\left(x\geq -\frac{1}{2}\text{ and }x<0\text{ and }p<0\right)\text{ or }\left(x\leq -\frac{1}{2}\text{ and }p>0\text{ and }x>-5\right)\\n\in \mathrm{R}\text{, }&x=-\frac{1}{2}\text{ and }p=0\end{matrix}\right.
Graph
Share
Copied to clipboard
6x-\left(x+5\right)n^{2}px=-3
Multiply n and n to get n^{2}.
6x-\left(xn^{2}+5n^{2}\right)px=-3
Use the distributive property to multiply x+5 by n^{2}.
6x-\left(xn^{2}p+5n^{2}p\right)x=-3
Use the distributive property to multiply xn^{2}+5n^{2} by p.
6x-\left(n^{2}px^{2}+5n^{2}px\right)=-3
Use the distributive property to multiply xn^{2}p+5n^{2}p by x.
6x-n^{2}px^{2}-5n^{2}px=-3
To find the opposite of n^{2}px^{2}+5n^{2}px, find the opposite of each term.
-n^{2}px^{2}-5n^{2}px=-3-6x
Subtract 6x from both sides.
\left(-n^{2}x^{2}-5n^{2}x\right)p=-3-6x
Combine all terms containing p.
\left(-n^{2}x^{2}-5xn^{2}\right)p=-6x-3
The equation is in standard form.
\frac{\left(-n^{2}x^{2}-5xn^{2}\right)p}{-n^{2}x^{2}-5xn^{2}}=\frac{-6x-3}{-n^{2}x^{2}-5xn^{2}}
Divide both sides by -5xn^{2}-x^{2}n^{2}.
p=\frac{-6x-3}{-n^{2}x^{2}-5xn^{2}}
Dividing by -5xn^{2}-x^{2}n^{2} undoes the multiplication by -5xn^{2}-x^{2}n^{2}.
p=\frac{3\left(2x+1\right)}{x\left(x+5\right)n^{2}}
Divide -3-6x by -5xn^{2}-x^{2}n^{2}.
6x-\left(x+5\right)n^{2}px=-3
Multiply n and n to get n^{2}.
6x-\left(xn^{2}+5n^{2}\right)px=-3
Use the distributive property to multiply x+5 by n^{2}.
6x-\left(xn^{2}p+5n^{2}p\right)x=-3
Use the distributive property to multiply xn^{2}+5n^{2} by p.
6x-\left(n^{2}px^{2}+5n^{2}px\right)=-3
Use the distributive property to multiply xn^{2}p+5n^{2}p by x.
6x-n^{2}px^{2}-5n^{2}px=-3
To find the opposite of n^{2}px^{2}+5n^{2}px, find the opposite of each term.
-n^{2}px^{2}-5n^{2}px=-3-6x
Subtract 6x from both sides.
\left(-n^{2}x^{2}-5n^{2}x\right)p=-3-6x
Combine all terms containing p.
\left(-n^{2}x^{2}-5xn^{2}\right)p=-6x-3
The equation is in standard form.
\frac{\left(-n^{2}x^{2}-5xn^{2}\right)p}{-n^{2}x^{2}-5xn^{2}}=\frac{-6x-3}{-n^{2}x^{2}-5xn^{2}}
Divide both sides by -5xn^{2}-x^{2}n^{2}.
p=\frac{-6x-3}{-n^{2}x^{2}-5xn^{2}}
Dividing by -5xn^{2}-x^{2}n^{2} undoes the multiplication by -5xn^{2}-x^{2}n^{2}.
p=\frac{3\left(2x+1\right)}{x\left(x+5\right)n^{2}}
Divide -6x-3 by -5xn^{2}-x^{2}n^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}