Solve for x
x=3
Graph
Share
Copied to clipboard
72\left(\frac{1}{4}+\frac{8x}{3}\right)=180-6\left(18x-15\right)+216x
Multiply both sides of the equation by 12, the least common multiple of 4,3,2.
72\left(\frac{3}{12}+\frac{4\times 8x}{12}\right)=180-6\left(18x-15\right)+216x
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 3 is 12. Multiply \frac{1}{4} times \frac{3}{3}. Multiply \frac{8x}{3} times \frac{4}{4}.
72\times \frac{3+4\times 8x}{12}=180-6\left(18x-15\right)+216x
Since \frac{3}{12} and \frac{4\times 8x}{12} have the same denominator, add them by adding their numerators.
72\times \frac{3+32x}{12}=180-6\left(18x-15\right)+216x
Do the multiplications in 3+4\times 8x.
6\left(3+32x\right)=180-6\left(18x-15\right)+216x
Cancel out 12, the greatest common factor in 72 and 12.
18+192x=180-6\left(18x-15\right)+216x
Use the distributive property to multiply 6 by 3+32x.
18+192x=180-108x+90+216x
Use the distributive property to multiply -6 by 18x-15.
18+192x=270-108x+216x
Add 180 and 90 to get 270.
18+192x=270+108x
Combine -108x and 216x to get 108x.
18+192x-108x=270
Subtract 108x from both sides.
18+84x=270
Combine 192x and -108x to get 84x.
84x=270-18
Subtract 18 from both sides.
84x=252
Subtract 18 from 270 to get 252.
x=\frac{252}{84}
Divide both sides by 84.
x=3
Divide 252 by 84 to get 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}