Solve for x (complex solution)
x=-2\sqrt{41}i\approx -0-12.806248475i
x=2\sqrt{41}i\approx 12.806248475i
Graph
Share
Copied to clipboard
36-x^{2}=2\times 25\times 4
Calculate 6 to the power of 2 and get 36.
36-x^{2}=50\times 4
Multiply 2 and 25 to get 50.
36-x^{2}=200
Multiply 50 and 4 to get 200.
-x^{2}=200-36
Subtract 36 from both sides.
-x^{2}=164
Subtract 36 from 200 to get 164.
x^{2}=-164
Divide both sides by -1.
x=2\sqrt{41}i x=-2\sqrt{41}i
The equation is now solved.
36-x^{2}=2\times 25\times 4
Calculate 6 to the power of 2 and get 36.
36-x^{2}=50\times 4
Multiply 2 and 25 to get 50.
36-x^{2}=200
Multiply 50 and 4 to get 200.
36-x^{2}-200=0
Subtract 200 from both sides.
-164-x^{2}=0
Subtract 200 from 36 to get -164.
-x^{2}-164=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\left(-1\right)\left(-164\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and -164 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-1\right)\left(-164\right)}}{2\left(-1\right)}
Square 0.
x=\frac{0±\sqrt{4\left(-164\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{0±\sqrt{-656}}{2\left(-1\right)}
Multiply 4 times -164.
x=\frac{0±4\sqrt{41}i}{2\left(-1\right)}
Take the square root of -656.
x=\frac{0±4\sqrt{41}i}{-2}
Multiply 2 times -1.
x=-2\sqrt{41}i
Now solve the equation x=\frac{0±4\sqrt{41}i}{-2} when ± is plus.
x=2\sqrt{41}i
Now solve the equation x=\frac{0±4\sqrt{41}i}{-2} when ± is minus.
x=-2\sqrt{41}i x=2\sqrt{41}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}