Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

36-\left(\frac{27}{8}\right)^{2}=x^{2}
Calculate 6 to the power of 2 and get 36.
36-\frac{729}{64}=x^{2}
Calculate \frac{27}{8} to the power of 2 and get \frac{729}{64}.
\frac{1575}{64}=x^{2}
Subtract \frac{729}{64} from 36 to get \frac{1575}{64}.
x^{2}=\frac{1575}{64}
Swap sides so that all variable terms are on the left hand side.
x=\frac{15\sqrt{7}}{8} x=-\frac{15\sqrt{7}}{8}
Take the square root of both sides of the equation.
36-\left(\frac{27}{8}\right)^{2}=x^{2}
Calculate 6 to the power of 2 and get 36.
36-\frac{729}{64}=x^{2}
Calculate \frac{27}{8} to the power of 2 and get \frac{729}{64}.
\frac{1575}{64}=x^{2}
Subtract \frac{729}{64} from 36 to get \frac{1575}{64}.
x^{2}=\frac{1575}{64}
Swap sides so that all variable terms are on the left hand side.
x^{2}-\frac{1575}{64}=0
Subtract \frac{1575}{64} from both sides.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{1575}{64}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{1575}{64} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{1575}{64}\right)}}{2}
Square 0.
x=\frac{0±\sqrt{\frac{1575}{16}}}{2}
Multiply -4 times -\frac{1575}{64}.
x=\frac{0±\frac{15\sqrt{7}}{4}}{2}
Take the square root of \frac{1575}{16}.
x=\frac{15\sqrt{7}}{8}
Now solve the equation x=\frac{0±\frac{15\sqrt{7}}{4}}{2} when ± is plus.
x=-\frac{15\sqrt{7}}{8}
Now solve the equation x=\frac{0±\frac{15\sqrt{7}}{4}}{2} when ± is minus.
x=\frac{15\sqrt{7}}{8} x=-\frac{15\sqrt{7}}{8}
The equation is now solved.