Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

36=\left(5+x\right)^{2}+\left(x+2\right)^{2}
Calculate 6 to the power of 2 and get 36.
36=25+10x+x^{2}+\left(x+2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+x\right)^{2}.
36=25+10x+x^{2}+x^{2}+4x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
36=25+10x+2x^{2}+4x+4
Combine x^{2} and x^{2} to get 2x^{2}.
36=25+14x+2x^{2}+4
Combine 10x and 4x to get 14x.
36=29+14x+2x^{2}
Add 25 and 4 to get 29.
29+14x+2x^{2}=36
Swap sides so that all variable terms are on the left hand side.
29+14x+2x^{2}-36=0
Subtract 36 from both sides.
-7+14x+2x^{2}=0
Subtract 36 from 29 to get -7.
2x^{2}+14x-7=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-14±\sqrt{14^{2}-4\times 2\left(-7\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 14 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-14±\sqrt{196-4\times 2\left(-7\right)}}{2\times 2}
Square 14.
x=\frac{-14±\sqrt{196-8\left(-7\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-14±\sqrt{196+56}}{2\times 2}
Multiply -8 times -7.
x=\frac{-14±\sqrt{252}}{2\times 2}
Add 196 to 56.
x=\frac{-14±6\sqrt{7}}{2\times 2}
Take the square root of 252.
x=\frac{-14±6\sqrt{7}}{4}
Multiply 2 times 2.
x=\frac{6\sqrt{7}-14}{4}
Now solve the equation x=\frac{-14±6\sqrt{7}}{4} when ± is plus. Add -14 to 6\sqrt{7}.
x=\frac{3\sqrt{7}-7}{2}
Divide -14+6\sqrt{7} by 4.
x=\frac{-6\sqrt{7}-14}{4}
Now solve the equation x=\frac{-14±6\sqrt{7}}{4} when ± is minus. Subtract 6\sqrt{7} from -14.
x=\frac{-3\sqrt{7}-7}{2}
Divide -14-6\sqrt{7} by 4.
x=\frac{3\sqrt{7}-7}{2} x=\frac{-3\sqrt{7}-7}{2}
The equation is now solved.
36=\left(5+x\right)^{2}+\left(x+2\right)^{2}
Calculate 6 to the power of 2 and get 36.
36=25+10x+x^{2}+\left(x+2\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5+x\right)^{2}.
36=25+10x+x^{2}+x^{2}+4x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x+2\right)^{2}.
36=25+10x+2x^{2}+4x+4
Combine x^{2} and x^{2} to get 2x^{2}.
36=25+14x+2x^{2}+4
Combine 10x and 4x to get 14x.
36=29+14x+2x^{2}
Add 25 and 4 to get 29.
29+14x+2x^{2}=36
Swap sides so that all variable terms are on the left hand side.
14x+2x^{2}=36-29
Subtract 29 from both sides.
14x+2x^{2}=7
Subtract 29 from 36 to get 7.
2x^{2}+14x=7
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}+14x}{2}=\frac{7}{2}
Divide both sides by 2.
x^{2}+\frac{14}{2}x=\frac{7}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}+7x=\frac{7}{2}
Divide 14 by 2.
x^{2}+7x+\left(\frac{7}{2}\right)^{2}=\frac{7}{2}+\left(\frac{7}{2}\right)^{2}
Divide 7, the coefficient of the x term, by 2 to get \frac{7}{2}. Then add the square of \frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+7x+\frac{49}{4}=\frac{7}{2}+\frac{49}{4}
Square \frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+7x+\frac{49}{4}=\frac{63}{4}
Add \frac{7}{2} to \frac{49}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{2}\right)^{2}=\frac{63}{4}
Factor x^{2}+7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{2}\right)^{2}}=\sqrt{\frac{63}{4}}
Take the square root of both sides of the equation.
x+\frac{7}{2}=\frac{3\sqrt{7}}{2} x+\frac{7}{2}=-\frac{3\sqrt{7}}{2}
Simplify.
x=\frac{3\sqrt{7}-7}{2} x=\frac{-3\sqrt{7}-7}{2}
Subtract \frac{7}{2} from both sides of the equation.