Solve for c
c=2\sqrt{109}\approx 20.880613018
c=-2\sqrt{109}\approx -20.880613018
Share
Copied to clipboard
36+20^{2}=c^{2}
Calculate 6 to the power of 2 and get 36.
36+400=c^{2}
Calculate 20 to the power of 2 and get 400.
436=c^{2}
Add 36 and 400 to get 436.
c^{2}=436
Swap sides so that all variable terms are on the left hand side.
c=2\sqrt{109} c=-2\sqrt{109}
Take the square root of both sides of the equation.
36+20^{2}=c^{2}
Calculate 6 to the power of 2 and get 36.
36+400=c^{2}
Calculate 20 to the power of 2 and get 400.
436=c^{2}
Add 36 and 400 to get 436.
c^{2}=436
Swap sides so that all variable terms are on the left hand side.
c^{2}-436=0
Subtract 436 from both sides.
c=\frac{0±\sqrt{0^{2}-4\left(-436\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -436 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
c=\frac{0±\sqrt{-4\left(-436\right)}}{2}
Square 0.
c=\frac{0±\sqrt{1744}}{2}
Multiply -4 times -436.
c=\frac{0±4\sqrt{109}}{2}
Take the square root of 1744.
c=2\sqrt{109}
Now solve the equation c=\frac{0±4\sqrt{109}}{2} when ± is plus.
c=-2\sqrt{109}
Now solve the equation c=\frac{0±4\sqrt{109}}{2} when ± is minus.
c=2\sqrt{109} c=-2\sqrt{109}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}