Solve for x (complex solution)
x=-\sqrt{110}i\approx -0-10.488088482i
x=\sqrt{110}i\approx 10.488088482i
Graph
Share
Copied to clipboard
36+\left(2\times 5+x\right)^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Calculate 6 to the power of 2 and get 36.
36+\left(10+x\right)^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Multiply 2 and 5 to get 10.
36+100+20x+x^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(10+x\right)^{2}.
136+20x+x^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Add 36 and 100 to get 136.
136+20x+x^{2}=16-\left(2\times 5-x\right)^{2}
Calculate 4 to the power of 2 and get 16.
136+20x+x^{2}=16-\left(10-x\right)^{2}
Multiply 2 and 5 to get 10.
136+20x+x^{2}=16-\left(100-20x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-x\right)^{2}.
136+20x+x^{2}=16-100+20x-x^{2}
To find the opposite of 100-20x+x^{2}, find the opposite of each term.
136+20x+x^{2}=-84+20x-x^{2}
Subtract 100 from 16 to get -84.
136+20x+x^{2}-20x=-84-x^{2}
Subtract 20x from both sides.
136+x^{2}=-84-x^{2}
Combine 20x and -20x to get 0.
136+x^{2}+x^{2}=-84
Add x^{2} to both sides.
136+2x^{2}=-84
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}=-84-136
Subtract 136 from both sides.
2x^{2}=-220
Subtract 136 from -84 to get -220.
x^{2}=\frac{-220}{2}
Divide both sides by 2.
x^{2}=-110
Divide -220 by 2 to get -110.
x=\sqrt{110}i x=-\sqrt{110}i
The equation is now solved.
36+\left(2\times 5+x\right)^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Calculate 6 to the power of 2 and get 36.
36+\left(10+x\right)^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Multiply 2 and 5 to get 10.
36+100+20x+x^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(10+x\right)^{2}.
136+20x+x^{2}=4^{2}-\left(2\times 5-x\right)^{2}
Add 36 and 100 to get 136.
136+20x+x^{2}=16-\left(2\times 5-x\right)^{2}
Calculate 4 to the power of 2 and get 16.
136+20x+x^{2}=16-\left(10-x\right)^{2}
Multiply 2 and 5 to get 10.
136+20x+x^{2}=16-\left(100-20x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(10-x\right)^{2}.
136+20x+x^{2}=16-100+20x-x^{2}
To find the opposite of 100-20x+x^{2}, find the opposite of each term.
136+20x+x^{2}=-84+20x-x^{2}
Subtract 100 from 16 to get -84.
136+20x+x^{2}-\left(-84\right)=20x-x^{2}
Subtract -84 from both sides.
136+20x+x^{2}+84=20x-x^{2}
The opposite of -84 is 84.
136+20x+x^{2}+84-20x=-x^{2}
Subtract 20x from both sides.
220+20x+x^{2}-20x=-x^{2}
Add 136 and 84 to get 220.
220+x^{2}=-x^{2}
Combine 20x and -20x to get 0.
220+x^{2}+x^{2}=0
Add x^{2} to both sides.
220+2x^{2}=0
Combine x^{2} and x^{2} to get 2x^{2}.
2x^{2}+220=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 2\times 220}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, 0 for b, and 220 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 2\times 220}}{2\times 2}
Square 0.
x=\frac{0±\sqrt{-8\times 220}}{2\times 2}
Multiply -4 times 2.
x=\frac{0±\sqrt{-1760}}{2\times 2}
Multiply -8 times 220.
x=\frac{0±4\sqrt{110}i}{2\times 2}
Take the square root of -1760.
x=\frac{0±4\sqrt{110}i}{4}
Multiply 2 times 2.
x=\sqrt{110}i
Now solve the equation x=\frac{0±4\sqrt{110}i}{4} when ± is plus.
x=-\sqrt{110}i
Now solve the equation x=\frac{0±4\sqrt{110}i}{4} when ± is minus.
x=\sqrt{110}i x=-\sqrt{110}i
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}