Solve for x (complex solution)
x=\sqrt{374}-13\approx 6.339079606
x=-\left(\sqrt{374}+13\right)\approx -32.339079606
Solve for x
x=\sqrt{374}-13\approx 6.339079606
x=-\sqrt{374}-13\approx -32.339079606
Graph
Share
Copied to clipboard
36+\left(13-x\right)^{2}=2x^{2}
Calculate 6 to the power of 2 and get 36.
36+169-26x+x^{2}=2x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(13-x\right)^{2}.
205-26x+x^{2}=2x^{2}
Add 36 and 169 to get 205.
205-26x+x^{2}-2x^{2}=0
Subtract 2x^{2} from both sides.
205-26x-x^{2}=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-26x+205=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\left(-1\right)\times 205}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -26 for b, and 205 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-26\right)±\sqrt{676-4\left(-1\right)\times 205}}{2\left(-1\right)}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676+4\times 205}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-26\right)±\sqrt{676+820}}{2\left(-1\right)}
Multiply 4 times 205.
x=\frac{-\left(-26\right)±\sqrt{1496}}{2\left(-1\right)}
Add 676 to 820.
x=\frac{-\left(-26\right)±2\sqrt{374}}{2\left(-1\right)}
Take the square root of 1496.
x=\frac{26±2\sqrt{374}}{2\left(-1\right)}
The opposite of -26 is 26.
x=\frac{26±2\sqrt{374}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{374}+26}{-2}
Now solve the equation x=\frac{26±2\sqrt{374}}{-2} when ± is plus. Add 26 to 2\sqrt{374}.
x=-\left(\sqrt{374}+13\right)
Divide 26+2\sqrt{374} by -2.
x=\frac{26-2\sqrt{374}}{-2}
Now solve the equation x=\frac{26±2\sqrt{374}}{-2} when ± is minus. Subtract 2\sqrt{374} from 26.
x=\sqrt{374}-13
Divide 26-2\sqrt{374} by -2.
x=-\left(\sqrt{374}+13\right) x=\sqrt{374}-13
The equation is now solved.
36+\left(13-x\right)^{2}=2x^{2}
Calculate 6 to the power of 2 and get 36.
36+169-26x+x^{2}=2x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(13-x\right)^{2}.
205-26x+x^{2}=2x^{2}
Add 36 and 169 to get 205.
205-26x+x^{2}-2x^{2}=0
Subtract 2x^{2} from both sides.
205-26x-x^{2}=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-26x-x^{2}=-205
Subtract 205 from both sides. Anything subtracted from zero gives its negation.
-x^{2}-26x=-205
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-26x}{-1}=-\frac{205}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{26}{-1}\right)x=-\frac{205}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+26x=-\frac{205}{-1}
Divide -26 by -1.
x^{2}+26x=205
Divide -205 by -1.
x^{2}+26x+13^{2}=205+13^{2}
Divide 26, the coefficient of the x term, by 2 to get 13. Then add the square of 13 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+26x+169=205+169
Square 13.
x^{2}+26x+169=374
Add 205 to 169.
\left(x+13\right)^{2}=374
Factor x^{2}+26x+169. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+13\right)^{2}}=\sqrt{374}
Take the square root of both sides of the equation.
x+13=\sqrt{374} x+13=-\sqrt{374}
Simplify.
x=\sqrt{374}-13 x=-\sqrt{374}-13
Subtract 13 from both sides of the equation.
36+\left(13-x\right)^{2}=2x^{2}
Calculate 6 to the power of 2 and get 36.
36+169-26x+x^{2}=2x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(13-x\right)^{2}.
205-26x+x^{2}=2x^{2}
Add 36 and 169 to get 205.
205-26x+x^{2}-2x^{2}=0
Subtract 2x^{2} from both sides.
205-26x-x^{2}=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}-26x+205=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\left(-1\right)\times 205}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, -26 for b, and 205 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-26\right)±\sqrt{676-4\left(-1\right)\times 205}}{2\left(-1\right)}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676+4\times 205}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-\left(-26\right)±\sqrt{676+820}}{2\left(-1\right)}
Multiply 4 times 205.
x=\frac{-\left(-26\right)±\sqrt{1496}}{2\left(-1\right)}
Add 676 to 820.
x=\frac{-\left(-26\right)±2\sqrt{374}}{2\left(-1\right)}
Take the square root of 1496.
x=\frac{26±2\sqrt{374}}{2\left(-1\right)}
The opposite of -26 is 26.
x=\frac{26±2\sqrt{374}}{-2}
Multiply 2 times -1.
x=\frac{2\sqrt{374}+26}{-2}
Now solve the equation x=\frac{26±2\sqrt{374}}{-2} when ± is plus. Add 26 to 2\sqrt{374}.
x=-\left(\sqrt{374}+13\right)
Divide 26+2\sqrt{374} by -2.
x=\frac{26-2\sqrt{374}}{-2}
Now solve the equation x=\frac{26±2\sqrt{374}}{-2} when ± is minus. Subtract 2\sqrt{374} from 26.
x=\sqrt{374}-13
Divide 26-2\sqrt{374} by -2.
x=-\left(\sqrt{374}+13\right) x=\sqrt{374}-13
The equation is now solved.
36+\left(13-x\right)^{2}=2x^{2}
Calculate 6 to the power of 2 and get 36.
36+169-26x+x^{2}=2x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(13-x\right)^{2}.
205-26x+x^{2}=2x^{2}
Add 36 and 169 to get 205.
205-26x+x^{2}-2x^{2}=0
Subtract 2x^{2} from both sides.
205-26x-x^{2}=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-26x-x^{2}=-205
Subtract 205 from both sides. Anything subtracted from zero gives its negation.
-x^{2}-26x=-205
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-x^{2}-26x}{-1}=-\frac{205}{-1}
Divide both sides by -1.
x^{2}+\left(-\frac{26}{-1}\right)x=-\frac{205}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}+26x=-\frac{205}{-1}
Divide -26 by -1.
x^{2}+26x=205
Divide -205 by -1.
x^{2}+26x+13^{2}=205+13^{2}
Divide 26, the coefficient of the x term, by 2 to get 13. Then add the square of 13 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+26x+169=205+169
Square 13.
x^{2}+26x+169=374
Add 205 to 169.
\left(x+13\right)^{2}=374
Factor x^{2}+26x+169. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+13\right)^{2}}=\sqrt{374}
Take the square root of both sides of the equation.
x+13=\sqrt{374} x+13=-\sqrt{374}
Simplify.
x=\sqrt{374}-13 x=-\sqrt{374}-13
Subtract 13 from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}