Solve for x
x = -\frac{41}{3} = -13\frac{2}{3} \approx -13.666666667
x=5
Graph
Share
Copied to clipboard
36+\left(13-x\right)^{2}=\left(2x\right)^{2}
Calculate 6 to the power of 2 and get 36.
36+169-26x+x^{2}=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(13-x\right)^{2}.
205-26x+x^{2}=\left(2x\right)^{2}
Add 36 and 169 to get 205.
205-26x+x^{2}=2^{2}x^{2}
Expand \left(2x\right)^{2}.
205-26x+x^{2}=4x^{2}
Calculate 2 to the power of 2 and get 4.
205-26x+x^{2}-4x^{2}=0
Subtract 4x^{2} from both sides.
205-26x-3x^{2}=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-26x+205=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-26 ab=-3\times 205=-615
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -3x^{2}+ax+bx+205. To find a and b, set up a system to be solved.
1,-615 3,-205 5,-123 15,-41
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -615.
1-615=-614 3-205=-202 5-123=-118 15-41=-26
Calculate the sum for each pair.
a=15 b=-41
The solution is the pair that gives sum -26.
\left(-3x^{2}+15x\right)+\left(-41x+205\right)
Rewrite -3x^{2}-26x+205 as \left(-3x^{2}+15x\right)+\left(-41x+205\right).
3x\left(-x+5\right)+41\left(-x+5\right)
Factor out 3x in the first and 41 in the second group.
\left(-x+5\right)\left(3x+41\right)
Factor out common term -x+5 by using distributive property.
x=5 x=-\frac{41}{3}
To find equation solutions, solve -x+5=0 and 3x+41=0.
36+\left(13-x\right)^{2}=\left(2x\right)^{2}
Calculate 6 to the power of 2 and get 36.
36+169-26x+x^{2}=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(13-x\right)^{2}.
205-26x+x^{2}=\left(2x\right)^{2}
Add 36 and 169 to get 205.
205-26x+x^{2}=2^{2}x^{2}
Expand \left(2x\right)^{2}.
205-26x+x^{2}=4x^{2}
Calculate 2 to the power of 2 and get 4.
205-26x+x^{2}-4x^{2}=0
Subtract 4x^{2} from both sides.
205-26x-3x^{2}=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-3x^{2}-26x+205=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-26\right)±\sqrt{\left(-26\right)^{2}-4\left(-3\right)\times 205}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -26 for b, and 205 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-26\right)±\sqrt{676-4\left(-3\right)\times 205}}{2\left(-3\right)}
Square -26.
x=\frac{-\left(-26\right)±\sqrt{676+12\times 205}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-26\right)±\sqrt{676+2460}}{2\left(-3\right)}
Multiply 12 times 205.
x=\frac{-\left(-26\right)±\sqrt{3136}}{2\left(-3\right)}
Add 676 to 2460.
x=\frac{-\left(-26\right)±56}{2\left(-3\right)}
Take the square root of 3136.
x=\frac{26±56}{2\left(-3\right)}
The opposite of -26 is 26.
x=\frac{26±56}{-6}
Multiply 2 times -3.
x=\frac{82}{-6}
Now solve the equation x=\frac{26±56}{-6} when ± is plus. Add 26 to 56.
x=-\frac{41}{3}
Reduce the fraction \frac{82}{-6} to lowest terms by extracting and canceling out 2.
x=-\frac{30}{-6}
Now solve the equation x=\frac{26±56}{-6} when ± is minus. Subtract 56 from 26.
x=5
Divide -30 by -6.
x=-\frac{41}{3} x=5
The equation is now solved.
36+\left(13-x\right)^{2}=\left(2x\right)^{2}
Calculate 6 to the power of 2 and get 36.
36+169-26x+x^{2}=\left(2x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(13-x\right)^{2}.
205-26x+x^{2}=\left(2x\right)^{2}
Add 36 and 169 to get 205.
205-26x+x^{2}=2^{2}x^{2}
Expand \left(2x\right)^{2}.
205-26x+x^{2}=4x^{2}
Calculate 2 to the power of 2 and get 4.
205-26x+x^{2}-4x^{2}=0
Subtract 4x^{2} from both sides.
205-26x-3x^{2}=0
Combine x^{2} and -4x^{2} to get -3x^{2}.
-26x-3x^{2}=-205
Subtract 205 from both sides. Anything subtracted from zero gives its negation.
-3x^{2}-26x=-205
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-3x^{2}-26x}{-3}=-\frac{205}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{26}{-3}\right)x=-\frac{205}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+\frac{26}{3}x=-\frac{205}{-3}
Divide -26 by -3.
x^{2}+\frac{26}{3}x=\frac{205}{3}
Divide -205 by -3.
x^{2}+\frac{26}{3}x+\left(\frac{13}{3}\right)^{2}=\frac{205}{3}+\left(\frac{13}{3}\right)^{2}
Divide \frac{26}{3}, the coefficient of the x term, by 2 to get \frac{13}{3}. Then add the square of \frac{13}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{26}{3}x+\frac{169}{9}=\frac{205}{3}+\frac{169}{9}
Square \frac{13}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{26}{3}x+\frac{169}{9}=\frac{784}{9}
Add \frac{205}{3} to \frac{169}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{13}{3}\right)^{2}=\frac{784}{9}
Factor x^{2}+\frac{26}{3}x+\frac{169}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{13}{3}\right)^{2}}=\sqrt{\frac{784}{9}}
Take the square root of both sides of the equation.
x+\frac{13}{3}=\frac{28}{3} x+\frac{13}{3}=-\frac{28}{3}
Simplify.
x=5 x=-\frac{41}{3}
Subtract \frac{13}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}