Solve for a
a=-14d
Solve for d
d=-\frac{a}{14}
Share
Copied to clipboard
6a+30d=9\left(a+8d\right)
Use the distributive property to multiply 6 by a+5d.
6a+30d=9a+72d
Use the distributive property to multiply 9 by a+8d.
6a+30d-9a=72d
Subtract 9a from both sides.
-3a+30d=72d
Combine 6a and -9a to get -3a.
-3a=72d-30d
Subtract 30d from both sides.
-3a=42d
Combine 72d and -30d to get 42d.
\frac{-3a}{-3}=\frac{42d}{-3}
Divide both sides by -3.
a=\frac{42d}{-3}
Dividing by -3 undoes the multiplication by -3.
a=-14d
Divide 42d by -3.
6a+30d=9\left(a+8d\right)
Use the distributive property to multiply 6 by a+5d.
6a+30d=9a+72d
Use the distributive property to multiply 9 by a+8d.
6a+30d-72d=9a
Subtract 72d from both sides.
6a-42d=9a
Combine 30d and -72d to get -42d.
-42d=9a-6a
Subtract 6a from both sides.
-42d=3a
Combine 9a and -6a to get 3a.
\frac{-42d}{-42}=\frac{3a}{-42}
Divide both sides by -42.
d=\frac{3a}{-42}
Dividing by -42 undoes the multiplication by -42.
d=-\frac{a}{14}
Divide 3a by -42.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}