Solve for x (complex solution)
x=\frac{-3+\sqrt{87}i}{8}\approx -0.375+1.165922382i
x=\frac{-\sqrt{87}i-3}{8}\approx -0.375-1.165922382i
Graph
Share
Copied to clipboard
-4x^{2}-3x=6
Swap sides so that all variable terms are on the left hand side.
-4x^{2}-3x-6=0
Subtract 6 from both sides.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-4\right)\left(-6\right)}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, -3 for b, and -6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-4\right)\left(-6\right)}}{2\left(-4\right)}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9+16\left(-6\right)}}{2\left(-4\right)}
Multiply -4 times -4.
x=\frac{-\left(-3\right)±\sqrt{9-96}}{2\left(-4\right)}
Multiply 16 times -6.
x=\frac{-\left(-3\right)±\sqrt{-87}}{2\left(-4\right)}
Add 9 to -96.
x=\frac{-\left(-3\right)±\sqrt{87}i}{2\left(-4\right)}
Take the square root of -87.
x=\frac{3±\sqrt{87}i}{2\left(-4\right)}
The opposite of -3 is 3.
x=\frac{3±\sqrt{87}i}{-8}
Multiply 2 times -4.
x=\frac{3+\sqrt{87}i}{-8}
Now solve the equation x=\frac{3±\sqrt{87}i}{-8} when ± is plus. Add 3 to i\sqrt{87}.
x=\frac{-\sqrt{87}i-3}{8}
Divide 3+i\sqrt{87} by -8.
x=\frac{-\sqrt{87}i+3}{-8}
Now solve the equation x=\frac{3±\sqrt{87}i}{-8} when ± is minus. Subtract i\sqrt{87} from 3.
x=\frac{-3+\sqrt{87}i}{8}
Divide 3-i\sqrt{87} by -8.
x=\frac{-\sqrt{87}i-3}{8} x=\frac{-3+\sqrt{87}i}{8}
The equation is now solved.
-4x^{2}-3x=6
Swap sides so that all variable terms are on the left hand side.
\frac{-4x^{2}-3x}{-4}=\frac{6}{-4}
Divide both sides by -4.
x^{2}+\left(-\frac{3}{-4}\right)x=\frac{6}{-4}
Dividing by -4 undoes the multiplication by -4.
x^{2}+\frac{3}{4}x=\frac{6}{-4}
Divide -3 by -4.
x^{2}+\frac{3}{4}x=-\frac{3}{2}
Reduce the fraction \frac{6}{-4} to lowest terms by extracting and canceling out 2.
x^{2}+\frac{3}{4}x+\left(\frac{3}{8}\right)^{2}=-\frac{3}{2}+\left(\frac{3}{8}\right)^{2}
Divide \frac{3}{4}, the coefficient of the x term, by 2 to get \frac{3}{8}. Then add the square of \frac{3}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{4}x+\frac{9}{64}=-\frac{3}{2}+\frac{9}{64}
Square \frac{3}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{4}x+\frac{9}{64}=-\frac{87}{64}
Add -\frac{3}{2} to \frac{9}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{8}\right)^{2}=-\frac{87}{64}
Factor x^{2}+\frac{3}{4}x+\frac{9}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{8}\right)^{2}}=\sqrt{-\frac{87}{64}}
Take the square root of both sides of the equation.
x+\frac{3}{8}=\frac{\sqrt{87}i}{8} x+\frac{3}{8}=-\frac{\sqrt{87}i}{8}
Simplify.
x=\frac{-3+\sqrt{87}i}{8} x=\frac{-\sqrt{87}i-3}{8}
Subtract \frac{3}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}