Solve for m
m=\frac{5+\sqrt{129}i}{11}\approx 0.454545455+1.03252879i
m=\frac{-\sqrt{129}i+5}{11}\approx 0.454545455-1.03252879i
Share
Copied to clipboard
6=-\left(\frac{5}{2}m-1\right)^{2}+\frac{3}{4}m^{2}
Combine m and \frac{3}{2}m to get \frac{5}{2}m.
6=-\left(\frac{25}{4}m^{2}-5m+1\right)+\frac{3}{4}m^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{5}{2}m-1\right)^{2}.
6=-\frac{25}{4}m^{2}+5m-1+\frac{3}{4}m^{2}
To find the opposite of \frac{25}{4}m^{2}-5m+1, find the opposite of each term.
6=-\frac{11}{2}m^{2}+5m-1
Combine -\frac{25}{4}m^{2} and \frac{3}{4}m^{2} to get -\frac{11}{2}m^{2}.
-\frac{11}{2}m^{2}+5m-1=6
Swap sides so that all variable terms are on the left hand side.
-\frac{11}{2}m^{2}+5m-1-6=0
Subtract 6 from both sides.
-\frac{11}{2}m^{2}+5m-7=0
Subtract 6 from -1 to get -7.
m=\frac{-5±\sqrt{5^{2}-4\left(-\frac{11}{2}\right)\left(-7\right)}}{2\left(-\frac{11}{2}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{11}{2} for a, 5 for b, and -7 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-5±\sqrt{25-4\left(-\frac{11}{2}\right)\left(-7\right)}}{2\left(-\frac{11}{2}\right)}
Square 5.
m=\frac{-5±\sqrt{25+22\left(-7\right)}}{2\left(-\frac{11}{2}\right)}
Multiply -4 times -\frac{11}{2}.
m=\frac{-5±\sqrt{25-154}}{2\left(-\frac{11}{2}\right)}
Multiply 22 times -7.
m=\frac{-5±\sqrt{-129}}{2\left(-\frac{11}{2}\right)}
Add 25 to -154.
m=\frac{-5±\sqrt{129}i}{2\left(-\frac{11}{2}\right)}
Take the square root of -129.
m=\frac{-5±\sqrt{129}i}{-11}
Multiply 2 times -\frac{11}{2}.
m=\frac{-5+\sqrt{129}i}{-11}
Now solve the equation m=\frac{-5±\sqrt{129}i}{-11} when ± is plus. Add -5 to i\sqrt{129}.
m=\frac{-\sqrt{129}i+5}{11}
Divide -5+i\sqrt{129} by -11.
m=\frac{-\sqrt{129}i-5}{-11}
Now solve the equation m=\frac{-5±\sqrt{129}i}{-11} when ± is minus. Subtract i\sqrt{129} from -5.
m=\frac{5+\sqrt{129}i}{11}
Divide -5-i\sqrt{129} by -11.
m=\frac{-\sqrt{129}i+5}{11} m=\frac{5+\sqrt{129}i}{11}
The equation is now solved.
6=-\left(\frac{5}{2}m-1\right)^{2}+\frac{3}{4}m^{2}
Combine m and \frac{3}{2}m to get \frac{5}{2}m.
6=-\left(\frac{25}{4}m^{2}-5m+1\right)+\frac{3}{4}m^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(\frac{5}{2}m-1\right)^{2}.
6=-\frac{25}{4}m^{2}+5m-1+\frac{3}{4}m^{2}
To find the opposite of \frac{25}{4}m^{2}-5m+1, find the opposite of each term.
6=-\frac{11}{2}m^{2}+5m-1
Combine -\frac{25}{4}m^{2} and \frac{3}{4}m^{2} to get -\frac{11}{2}m^{2}.
-\frac{11}{2}m^{2}+5m-1=6
Swap sides so that all variable terms are on the left hand side.
-\frac{11}{2}m^{2}+5m=6+1
Add 1 to both sides.
-\frac{11}{2}m^{2}+5m=7
Add 6 and 1 to get 7.
\frac{-\frac{11}{2}m^{2}+5m}{-\frac{11}{2}}=\frac{7}{-\frac{11}{2}}
Divide both sides of the equation by -\frac{11}{2}, which is the same as multiplying both sides by the reciprocal of the fraction.
m^{2}+\frac{5}{-\frac{11}{2}}m=\frac{7}{-\frac{11}{2}}
Dividing by -\frac{11}{2} undoes the multiplication by -\frac{11}{2}.
m^{2}-\frac{10}{11}m=\frac{7}{-\frac{11}{2}}
Divide 5 by -\frac{11}{2} by multiplying 5 by the reciprocal of -\frac{11}{2}.
m^{2}-\frac{10}{11}m=-\frac{14}{11}
Divide 7 by -\frac{11}{2} by multiplying 7 by the reciprocal of -\frac{11}{2}.
m^{2}-\frac{10}{11}m+\left(-\frac{5}{11}\right)^{2}=-\frac{14}{11}+\left(-\frac{5}{11}\right)^{2}
Divide -\frac{10}{11}, the coefficient of the x term, by 2 to get -\frac{5}{11}. Then add the square of -\frac{5}{11} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}-\frac{10}{11}m+\frac{25}{121}=-\frac{14}{11}+\frac{25}{121}
Square -\frac{5}{11} by squaring both the numerator and the denominator of the fraction.
m^{2}-\frac{10}{11}m+\frac{25}{121}=-\frac{129}{121}
Add -\frac{14}{11} to \frac{25}{121} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m-\frac{5}{11}\right)^{2}=-\frac{129}{121}
Factor m^{2}-\frac{10}{11}m+\frac{25}{121}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m-\frac{5}{11}\right)^{2}}=\sqrt{-\frac{129}{121}}
Take the square root of both sides of the equation.
m-\frac{5}{11}=\frac{\sqrt{129}i}{11} m-\frac{5}{11}=-\frac{\sqrt{129}i}{11}
Simplify.
m=\frac{5+\sqrt{129}i}{11} m=\frac{-\sqrt{129}i+5}{11}
Add \frac{5}{11} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}