Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{1}{6}x^{2}+2x+4=6
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{6}x^{2}+2x+4-6=0
Subtract 6 from both sides.
-\frac{1}{6}x^{2}+2x-2=0
Subtract 6 from 4 to get -2.
x=\frac{-2±\sqrt{2^{2}-4\left(-\frac{1}{6}\right)\left(-2\right)}}{2\left(-\frac{1}{6}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{1}{6} for a, 2 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-\frac{1}{6}\right)\left(-2\right)}}{2\left(-\frac{1}{6}\right)}
Square 2.
x=\frac{-2±\sqrt{4+\frac{2}{3}\left(-2\right)}}{2\left(-\frac{1}{6}\right)}
Multiply -4 times -\frac{1}{6}.
x=\frac{-2±\sqrt{4-\frac{4}{3}}}{2\left(-\frac{1}{6}\right)}
Multiply \frac{2}{3} times -2.
x=\frac{-2±\sqrt{\frac{8}{3}}}{2\left(-\frac{1}{6}\right)}
Add 4 to -\frac{4}{3}.
x=\frac{-2±\frac{2\sqrt{6}}{3}}{2\left(-\frac{1}{6}\right)}
Take the square root of \frac{8}{3}.
x=\frac{-2±\frac{2\sqrt{6}}{3}}{-\frac{1}{3}}
Multiply 2 times -\frac{1}{6}.
x=\frac{\frac{2\sqrt{6}}{3}-2}{-\frac{1}{3}}
Now solve the equation x=\frac{-2±\frac{2\sqrt{6}}{3}}{-\frac{1}{3}} when ± is plus. Add -2 to \frac{2\sqrt{6}}{3}.
x=6-2\sqrt{6}
Divide -2+\frac{2\sqrt{6}}{3} by -\frac{1}{3} by multiplying -2+\frac{2\sqrt{6}}{3} by the reciprocal of -\frac{1}{3}.
x=\frac{-\frac{2\sqrt{6}}{3}-2}{-\frac{1}{3}}
Now solve the equation x=\frac{-2±\frac{2\sqrt{6}}{3}}{-\frac{1}{3}} when ± is minus. Subtract \frac{2\sqrt{6}}{3} from -2.
x=2\sqrt{6}+6
Divide -2-\frac{2\sqrt{6}}{3} by -\frac{1}{3} by multiplying -2-\frac{2\sqrt{6}}{3} by the reciprocal of -\frac{1}{3}.
x=6-2\sqrt{6} x=2\sqrt{6}+6
The equation is now solved.
-\frac{1}{6}x^{2}+2x+4=6
Swap sides so that all variable terms are on the left hand side.
-\frac{1}{6}x^{2}+2x=6-4
Subtract 4 from both sides.
-\frac{1}{6}x^{2}+2x=2
Subtract 4 from 6 to get 2.
\frac{-\frac{1}{6}x^{2}+2x}{-\frac{1}{6}}=\frac{2}{-\frac{1}{6}}
Multiply both sides by -6.
x^{2}+\frac{2}{-\frac{1}{6}}x=\frac{2}{-\frac{1}{6}}
Dividing by -\frac{1}{6} undoes the multiplication by -\frac{1}{6}.
x^{2}-12x=\frac{2}{-\frac{1}{6}}
Divide 2 by -\frac{1}{6} by multiplying 2 by the reciprocal of -\frac{1}{6}.
x^{2}-12x=-12
Divide 2 by -\frac{1}{6} by multiplying 2 by the reciprocal of -\frac{1}{6}.
x^{2}-12x+\left(-6\right)^{2}=-12+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=-12+36
Square -6.
x^{2}-12x+36=24
Add -12 to 36.
\left(x-6\right)^{2}=24
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{24}
Take the square root of both sides of the equation.
x-6=2\sqrt{6} x-6=-2\sqrt{6}
Simplify.
x=2\sqrt{6}+6 x=6-2\sqrt{6}
Add 6 to both sides of the equation.