Solve for x
x = \frac{15}{4} = 3\frac{3}{4} = 3.75
Graph
Share
Copied to clipboard
6=x\times \frac{\frac{1\times 15+1}{15}}{\frac{2}{3}}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
6=x\times \frac{\frac{15+1}{15}}{\frac{2}{3}}
Multiply 1 and 15 to get 15.
6=x\times \frac{\frac{16}{15}}{\frac{2}{3}}
Add 15 and 1 to get 16.
6=x\times \frac{16}{15}\times \frac{3}{2}
Divide \frac{16}{15} by \frac{2}{3} by multiplying \frac{16}{15} by the reciprocal of \frac{2}{3}.
6=x\times \frac{16\times 3}{15\times 2}
Multiply \frac{16}{15} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
6=x\times \frac{48}{30}
Do the multiplications in the fraction \frac{16\times 3}{15\times 2}.
6=x\times \frac{8}{5}
Reduce the fraction \frac{48}{30} to lowest terms by extracting and canceling out 6.
x\times \frac{8}{5}=6
Swap sides so that all variable terms are on the left hand side.
x=6\times \frac{5}{8}
Multiply both sides by \frac{5}{8}, the reciprocal of \frac{8}{5}.
x=\frac{6\times 5}{8}
Express 6\times \frac{5}{8} as a single fraction.
x=\frac{30}{8}
Multiply 6 and 5 to get 30.
x=\frac{15}{4}
Reduce the fraction \frac{30}{8} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}