Factor
\left(x+2\right)\left(x+3\right)
Evaluate
\left(x+2\right)\left(x+3\right)
Graph
Share
Copied to clipboard
x^{2}+5x+6
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=5 ab=1\times 6=6
Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
1,6 2,3
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 6.
1+6=7 2+3=5
Calculate the sum for each pair.
a=2 b=3
The solution is the pair that gives sum 5.
\left(x^{2}+2x\right)+\left(3x+6\right)
Rewrite x^{2}+5x+6 as \left(x^{2}+2x\right)+\left(3x+6\right).
x\left(x+2\right)+3\left(x+2\right)
Factor out x in the first and 3 in the second group.
\left(x+2\right)\left(x+3\right)
Factor out common term x+2 by using distributive property.
x^{2}+5x+6=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-5±\sqrt{5^{2}-4\times 6}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-5±\sqrt{25-4\times 6}}{2}
Square 5.
x=\frac{-5±\sqrt{25-24}}{2}
Multiply -4 times 6.
x=\frac{-5±\sqrt{1}}{2}
Add 25 to -24.
x=\frac{-5±1}{2}
Take the square root of 1.
x=-\frac{4}{2}
Now solve the equation x=\frac{-5±1}{2} when ± is plus. Add -5 to 1.
x=-2
Divide -4 by 2.
x=-\frac{6}{2}
Now solve the equation x=\frac{-5±1}{2} when ± is minus. Subtract 1 from -5.
x=-3
Divide -6 by 2.
x^{2}+5x+6=\left(x-\left(-2\right)\right)\left(x-\left(-3\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -2 for x_{1} and -3 for x_{2}.
x^{2}+5x+6=\left(x+2\right)\left(x+3\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}