Evaluate
4x^{3}-\frac{3x^{2}}{2}+3
Factor
\frac{8x^{3}-3x^{2}+6}{2}
Graph
Share
Copied to clipboard
6+4x^{3}-\frac{3xx}{2}-3
Express \frac{3x}{2}x as a single fraction.
6+4x^{3}-\frac{3x^{2}}{2}-3
Multiply x and x to get x^{2}.
\frac{2\left(6+4x^{3}\right)}{2}-\frac{3x^{2}}{2}-3
To add or subtract expressions, expand them to make their denominators the same. Multiply 6+4x^{3} times \frac{2}{2}.
\frac{2\left(6+4x^{3}\right)-3x^{2}}{2}-3
Since \frac{2\left(6+4x^{3}\right)}{2} and \frac{3x^{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{12+8x^{3}-3x^{2}}{2}-3
Do the multiplications in 2\left(6+4x^{3}\right)-3x^{2}.
\frac{12+8x^{3}-3x^{2}}{2}-\frac{3\times 2}{2}
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{2}{2}.
\frac{12+8x^{3}-3x^{2}-3\times 2}{2}
Since \frac{12+8x^{3}-3x^{2}}{2} and \frac{3\times 2}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{12+8x^{3}-3x^{2}-6}{2}
Do the multiplications in 12+8x^{3}-3x^{2}-3\times 2.
\frac{6+8x^{3}-3x^{2}}{2}
Combine like terms in 12+8x^{3}-3x^{2}-6.
\frac{6+8x^{3}-3xx}{2}
Factor out \frac{1}{2}. Polynomial 8x^{3}-3x^{2}+6 is not factored since it does not have any rational roots.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}