Solve for x
x=-\frac{35}{198}\approx -0.176767677
Graph
Share
Copied to clipboard
7\times \frac{6\times 3+2}{3}+7x\left(-8\right)=-x\left(42\times 7+5\right)+7x\left(-3\right)
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 7x, the least common multiple of x,7.
7\times \frac{18+2}{3}+7x\left(-8\right)=-x\left(42\times 7+5\right)+7x\left(-3\right)
Multiply 6 and 3 to get 18.
7\times \frac{20}{3}+7x\left(-8\right)=-x\left(42\times 7+5\right)+7x\left(-3\right)
Add 18 and 2 to get 20.
\frac{7\times 20}{3}+7x\left(-8\right)=-x\left(42\times 7+5\right)+7x\left(-3\right)
Express 7\times \frac{20}{3} as a single fraction.
\frac{140}{3}+7x\left(-8\right)=-x\left(42\times 7+5\right)+7x\left(-3\right)
Multiply 7 and 20 to get 140.
\frac{140}{3}-56x=-x\left(42\times 7+5\right)+7x\left(-3\right)
Multiply 7 and -8 to get -56.
\frac{140}{3}-56x=-x\left(294+5\right)+7x\left(-3\right)
Multiply 42 and 7 to get 294.
\frac{140}{3}-56x=-x\times 299+7x\left(-3\right)
Add 294 and 5 to get 299.
\frac{140}{3}-56x=-x\times 299-21x
Multiply 7 and -3 to get -21.
\frac{140}{3}-56x+x\times 299=-21x
Add x\times 299 to both sides.
\frac{140}{3}+243x=-21x
Combine -56x and x\times 299 to get 243x.
\frac{140}{3}+243x+21x=0
Add 21x to both sides.
\frac{140}{3}+264x=0
Combine 243x and 21x to get 264x.
264x=-\frac{140}{3}
Subtract \frac{140}{3} from both sides. Anything subtracted from zero gives its negation.
x=\frac{-\frac{140}{3}}{264}
Divide both sides by 264.
x=\frac{-140}{3\times 264}
Express \frac{-\frac{140}{3}}{264} as a single fraction.
x=\frac{-140}{792}
Multiply 3 and 264 to get 792.
x=-\frac{35}{198}
Reduce the fraction \frac{-140}{792} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}