Solve for x
x=\frac{6\sqrt{6}-4}{25}\approx 0.427877538
Graph
Share
Copied to clipboard
\left(5x-3+4\right)^{2}=\left(\sqrt{9+2x}\right)^{2}
Square both sides of the equation.
\left(5x+1\right)^{2}=\left(\sqrt{9+2x}\right)^{2}
Add -3 and 4 to get 1.
25x^{2}+10x+1=\left(\sqrt{9+2x}\right)^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(5x+1\right)^{2}.
25x^{2}+10x+1=9+2x
Calculate \sqrt{9+2x} to the power of 2 and get 9+2x.
25x^{2}+10x+1-9=2x
Subtract 9 from both sides.
25x^{2}+10x-8=2x
Subtract 9 from 1 to get -8.
25x^{2}+10x-8-2x=0
Subtract 2x from both sides.
25x^{2}+8x-8=0
Combine 10x and -2x to get 8x.
x=\frac{-8±\sqrt{8^{2}-4\times 25\left(-8\right)}}{2\times 25}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 25 for a, 8 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-8±\sqrt{64-4\times 25\left(-8\right)}}{2\times 25}
Square 8.
x=\frac{-8±\sqrt{64-100\left(-8\right)}}{2\times 25}
Multiply -4 times 25.
x=\frac{-8±\sqrt{64+800}}{2\times 25}
Multiply -100 times -8.
x=\frac{-8±\sqrt{864}}{2\times 25}
Add 64 to 800.
x=\frac{-8±12\sqrt{6}}{2\times 25}
Take the square root of 864.
x=\frac{-8±12\sqrt{6}}{50}
Multiply 2 times 25.
x=\frac{12\sqrt{6}-8}{50}
Now solve the equation x=\frac{-8±12\sqrt{6}}{50} when ± is plus. Add -8 to 12\sqrt{6}.
x=\frac{6\sqrt{6}-4}{25}
Divide -8+12\sqrt{6} by 50.
x=\frac{-12\sqrt{6}-8}{50}
Now solve the equation x=\frac{-8±12\sqrt{6}}{50} when ± is minus. Subtract 12\sqrt{6} from -8.
x=\frac{-6\sqrt{6}-4}{25}
Divide -8-12\sqrt{6} by 50.
x=\frac{6\sqrt{6}-4}{25} x=\frac{-6\sqrt{6}-4}{25}
The equation is now solved.
5\times \frac{6\sqrt{6}-4}{25}-3+4=\sqrt{9+2\times \frac{6\sqrt{6}-4}{25}}
Substitute \frac{6\sqrt{6}-4}{25} for x in the equation 5x-3+4=\sqrt{9+2x}.
\frac{6}{5}\times 6^{\frac{1}{2}}+\frac{1}{5}=\frac{6}{5}\times 6^{\frac{1}{2}}+\frac{1}{5}
Simplify. The value x=\frac{6\sqrt{6}-4}{25} satisfies the equation.
5\times \frac{-6\sqrt{6}-4}{25}-3+4=\sqrt{9+2\times \frac{-6\sqrt{6}-4}{25}}
Substitute \frac{-6\sqrt{6}-4}{25} for x in the equation 5x-3+4=\sqrt{9+2x}.
-\frac{6}{5}\times 6^{\frac{1}{2}}+\frac{1}{5}=\frac{6}{5}\times 6^{\frac{1}{2}}-\frac{1}{5}
Simplify. The value x=\frac{-6\sqrt{6}-4}{25} does not satisfy the equation because the left and the right hand side have opposite signs.
x=\frac{6\sqrt{6}-4}{25}
Equation 5x+1=\sqrt{2x+9} has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}