Solve for x
x=-0.5
Graph
Share
Copied to clipboard
5x-17.5+10x=x-7\left(4+x\right)
Use the distributive property to multiply -2.5 by 7-4x.
15x-17.5=x-7\left(4+x\right)
Combine 5x and 10x to get 15x.
15x-17.5=x-28-7x
Use the distributive property to multiply -7 by 4+x.
15x-17.5=-6x-28
Combine x and -7x to get -6x.
15x-17.5+6x=-28
Add 6x to both sides.
21x-17.5=-28
Combine 15x and 6x to get 21x.
21x=-28+17.5
Add 17.5 to both sides.
21x=-10.5
Add -28 and 17.5 to get -10.5.
x=\frac{-10.5}{21}
Divide both sides by 21.
x=\frac{-105}{210}
Expand \frac{-10.5}{21} by multiplying both numerator and the denominator by 10.
x=-\frac{1}{2}
Reduce the fraction \frac{-105}{210} to lowest terms by extracting and canceling out 105.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}