Solve for x (complex solution)
x=\frac{-\sqrt{263}i+5}{9}\approx 0.555555556-1.801919416i
x=\frac{5+\sqrt{263}i}{9}\approx 0.555555556+1.801919416i
Graph
Share
Copied to clipboard
9x-2-6x^{2}-3x^{2}+x-30=0
Combine 5x and 4x to get 9x.
9x-2-9x^{2}+x-30=0
Combine -6x^{2} and -3x^{2} to get -9x^{2}.
10x-2-9x^{2}-30=0
Combine 9x and x to get 10x.
10x-32-9x^{2}=0
Subtract 30 from -2 to get -32.
-9x^{2}+10x-32=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-10±\sqrt{10^{2}-4\left(-9\right)\left(-32\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 10 for b, and -32 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-10±\sqrt{100-4\left(-9\right)\left(-32\right)}}{2\left(-9\right)}
Square 10.
x=\frac{-10±\sqrt{100+36\left(-32\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-10±\sqrt{100-1152}}{2\left(-9\right)}
Multiply 36 times -32.
x=\frac{-10±\sqrt{-1052}}{2\left(-9\right)}
Add 100 to -1152.
x=\frac{-10±2\sqrt{263}i}{2\left(-9\right)}
Take the square root of -1052.
x=\frac{-10±2\sqrt{263}i}{-18}
Multiply 2 times -9.
x=\frac{-10+2\sqrt{263}i}{-18}
Now solve the equation x=\frac{-10±2\sqrt{263}i}{-18} when ± is plus. Add -10 to 2i\sqrt{263}.
x=\frac{-\sqrt{263}i+5}{9}
Divide -10+2i\sqrt{263} by -18.
x=\frac{-2\sqrt{263}i-10}{-18}
Now solve the equation x=\frac{-10±2\sqrt{263}i}{-18} when ± is minus. Subtract 2i\sqrt{263} from -10.
x=\frac{5+\sqrt{263}i}{9}
Divide -10-2i\sqrt{263} by -18.
x=\frac{-\sqrt{263}i+5}{9} x=\frac{5+\sqrt{263}i}{9}
The equation is now solved.
9x-2-6x^{2}-3x^{2}+x-30=0
Combine 5x and 4x to get 9x.
9x-2-9x^{2}+x-30=0
Combine -6x^{2} and -3x^{2} to get -9x^{2}.
10x-2-9x^{2}-30=0
Combine 9x and x to get 10x.
10x-32-9x^{2}=0
Subtract 30 from -2 to get -32.
10x-9x^{2}=32
Add 32 to both sides. Anything plus zero gives itself.
-9x^{2}+10x=32
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}+10x}{-9}=\frac{32}{-9}
Divide both sides by -9.
x^{2}+\frac{10}{-9}x=\frac{32}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{10}{9}x=\frac{32}{-9}
Divide 10 by -9.
x^{2}-\frac{10}{9}x=-\frac{32}{9}
Divide 32 by -9.
x^{2}-\frac{10}{9}x+\left(-\frac{5}{9}\right)^{2}=-\frac{32}{9}+\left(-\frac{5}{9}\right)^{2}
Divide -\frac{10}{9}, the coefficient of the x term, by 2 to get -\frac{5}{9}. Then add the square of -\frac{5}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{10}{9}x+\frac{25}{81}=-\frac{32}{9}+\frac{25}{81}
Square -\frac{5}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{10}{9}x+\frac{25}{81}=-\frac{263}{81}
Add -\frac{32}{9} to \frac{25}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{9}\right)^{2}=-\frac{263}{81}
Factor x^{2}-\frac{10}{9}x+\frac{25}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{9}\right)^{2}}=\sqrt{-\frac{263}{81}}
Take the square root of both sides of the equation.
x-\frac{5}{9}=\frac{\sqrt{263}i}{9} x-\frac{5}{9}=-\frac{\sqrt{263}i}{9}
Simplify.
x=\frac{5+\sqrt{263}i}{9} x=\frac{-\sqrt{263}i+5}{9}
Add \frac{5}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}