Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

5xx-1=15x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
5x^{2}-1=15x
Multiply x and x to get x^{2}.
5x^{2}-1-15x=0
Subtract 15x from both sides.
5x^{2}-15x-1=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}-4\times 5\left(-1\right)}}{2\times 5}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5 for a, -15 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-15\right)±\sqrt{225-4\times 5\left(-1\right)}}{2\times 5}
Square -15.
x=\frac{-\left(-15\right)±\sqrt{225-20\left(-1\right)}}{2\times 5}
Multiply -4 times 5.
x=\frac{-\left(-15\right)±\sqrt{225+20}}{2\times 5}
Multiply -20 times -1.
x=\frac{-\left(-15\right)±\sqrt{245}}{2\times 5}
Add 225 to 20.
x=\frac{-\left(-15\right)±7\sqrt{5}}{2\times 5}
Take the square root of 245.
x=\frac{15±7\sqrt{5}}{2\times 5}
The opposite of -15 is 15.
x=\frac{15±7\sqrt{5}}{10}
Multiply 2 times 5.
x=\frac{7\sqrt{5}+15}{10}
Now solve the equation x=\frac{15±7\sqrt{5}}{10} when ± is plus. Add 15 to 7\sqrt{5}.
x=\frac{7\sqrt{5}}{10}+\frac{3}{2}
Divide 15+7\sqrt{5} by 10.
x=\frac{15-7\sqrt{5}}{10}
Now solve the equation x=\frac{15±7\sqrt{5}}{10} when ± is minus. Subtract 7\sqrt{5} from 15.
x=-\frac{7\sqrt{5}}{10}+\frac{3}{2}
Divide 15-7\sqrt{5} by 10.
x=\frac{7\sqrt{5}}{10}+\frac{3}{2} x=-\frac{7\sqrt{5}}{10}+\frac{3}{2}
The equation is now solved.
5xx-1=15x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
5x^{2}-1=15x
Multiply x and x to get x^{2}.
5x^{2}-1-15x=0
Subtract 15x from both sides.
5x^{2}-15x=1
Add 1 to both sides. Anything plus zero gives itself.
\frac{5x^{2}-15x}{5}=\frac{1}{5}
Divide both sides by 5.
x^{2}+\left(-\frac{15}{5}\right)x=\frac{1}{5}
Dividing by 5 undoes the multiplication by 5.
x^{2}-3x=\frac{1}{5}
Divide -15 by 5.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{1}{5}+\left(-\frac{3}{2}\right)^{2}
Divide -3, the coefficient of the x term, by 2 to get -\frac{3}{2}. Then add the square of -\frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-3x+\frac{9}{4}=\frac{1}{5}+\frac{9}{4}
Square -\frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-3x+\frac{9}{4}=\frac{49}{20}
Add \frac{1}{5} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{3}{2}\right)^{2}=\frac{49}{20}
Factor x^{2}-3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{49}{20}}
Take the square root of both sides of the equation.
x-\frac{3}{2}=\frac{7\sqrt{5}}{10} x-\frac{3}{2}=-\frac{7\sqrt{5}}{10}
Simplify.
x=\frac{7\sqrt{5}}{10}+\frac{3}{2} x=-\frac{7\sqrt{5}}{10}+\frac{3}{2}
Add \frac{3}{2} to both sides of the equation.