Solve for x
x=-1
x=\frac{2}{9}\approx 0.222222222
Graph
Share
Copied to clipboard
5x+6=9x^{2}+12x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
5x+6-9x^{2}=12x+4
Subtract 9x^{2} from both sides.
5x+6-9x^{2}-12x=4
Subtract 12x from both sides.
-7x+6-9x^{2}=4
Combine 5x and -12x to get -7x.
-7x+6-9x^{2}-4=0
Subtract 4 from both sides.
-7x+2-9x^{2}=0
Subtract 4 from 6 to get 2.
-9x^{2}-7x+2=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-7 ab=-9\times 2=-18
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -9x^{2}+ax+bx+2. To find a and b, set up a system to be solved.
1,-18 2,-9 3,-6
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -18.
1-18=-17 2-9=-7 3-6=-3
Calculate the sum for each pair.
a=2 b=-9
The solution is the pair that gives sum -7.
\left(-9x^{2}+2x\right)+\left(-9x+2\right)
Rewrite -9x^{2}-7x+2 as \left(-9x^{2}+2x\right)+\left(-9x+2\right).
-x\left(9x-2\right)-\left(9x-2\right)
Factor out -x in the first and -1 in the second group.
\left(9x-2\right)\left(-x-1\right)
Factor out common term 9x-2 by using distributive property.
x=\frac{2}{9} x=-1
To find equation solutions, solve 9x-2=0 and -x-1=0.
5x+6=9x^{2}+12x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
5x+6-9x^{2}=12x+4
Subtract 9x^{2} from both sides.
5x+6-9x^{2}-12x=4
Subtract 12x from both sides.
-7x+6-9x^{2}=4
Combine 5x and -12x to get -7x.
-7x+6-9x^{2}-4=0
Subtract 4 from both sides.
-7x+2-9x^{2}=0
Subtract 4 from 6 to get 2.
-9x^{2}-7x+2=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\left(-9\right)\times 2}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, -7 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\left(-9\right)\times 2}}{2\left(-9\right)}
Square -7.
x=\frac{-\left(-7\right)±\sqrt{49+36\times 2}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2\left(-9\right)}
Multiply 36 times 2.
x=\frac{-\left(-7\right)±\sqrt{121}}{2\left(-9\right)}
Add 49 to 72.
x=\frac{-\left(-7\right)±11}{2\left(-9\right)}
Take the square root of 121.
x=\frac{7±11}{2\left(-9\right)}
The opposite of -7 is 7.
x=\frac{7±11}{-18}
Multiply 2 times -9.
x=\frac{18}{-18}
Now solve the equation x=\frac{7±11}{-18} when ± is plus. Add 7 to 11.
x=-1
Divide 18 by -18.
x=-\frac{4}{-18}
Now solve the equation x=\frac{7±11}{-18} when ± is minus. Subtract 11 from 7.
x=\frac{2}{9}
Reduce the fraction \frac{-4}{-18} to lowest terms by extracting and canceling out 2.
x=-1 x=\frac{2}{9}
The equation is now solved.
5x+6=9x^{2}+12x+4
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3x+2\right)^{2}.
5x+6-9x^{2}=12x+4
Subtract 9x^{2} from both sides.
5x+6-9x^{2}-12x=4
Subtract 12x from both sides.
-7x+6-9x^{2}=4
Combine 5x and -12x to get -7x.
-7x-9x^{2}=4-6
Subtract 6 from both sides.
-7x-9x^{2}=-2
Subtract 6 from 4 to get -2.
-9x^{2}-7x=-2
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}-7x}{-9}=-\frac{2}{-9}
Divide both sides by -9.
x^{2}+\left(-\frac{7}{-9}\right)x=-\frac{2}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}+\frac{7}{9}x=-\frac{2}{-9}
Divide -7 by -9.
x^{2}+\frac{7}{9}x=\frac{2}{9}
Divide -2 by -9.
x^{2}+\frac{7}{9}x+\left(\frac{7}{18}\right)^{2}=\frac{2}{9}+\left(\frac{7}{18}\right)^{2}
Divide \frac{7}{9}, the coefficient of the x term, by 2 to get \frac{7}{18}. Then add the square of \frac{7}{18} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{7}{9}x+\frac{49}{324}=\frac{2}{9}+\frac{49}{324}
Square \frac{7}{18} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{7}{9}x+\frac{49}{324}=\frac{121}{324}
Add \frac{2}{9} to \frac{49}{324} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{7}{18}\right)^{2}=\frac{121}{324}
Factor x^{2}+\frac{7}{9}x+\frac{49}{324}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{18}\right)^{2}}=\sqrt{\frac{121}{324}}
Take the square root of both sides of the equation.
x+\frac{7}{18}=\frac{11}{18} x+\frac{7}{18}=-\frac{11}{18}
Simplify.
x=\frac{2}{9} x=-1
Subtract \frac{7}{18} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}