Solve for x
x=\frac{-4y-24}{5}
Solve for y
y=-\frac{5x}{4}-6
Graph
Share
Copied to clipboard
5x=-24-4y
Subtract 4y from both sides.
5x=-4y-24
The equation is in standard form.
\frac{5x}{5}=\frac{-4y-24}{5}
Divide both sides by 5.
x=\frac{-4y-24}{5}
Dividing by 5 undoes the multiplication by 5.
4y=-24-5x
Subtract 5x from both sides.
4y=-5x-24
The equation is in standard form.
\frac{4y}{4}=\frac{-5x-24}{4}
Divide both sides by 4.
y=\frac{-5x-24}{4}
Dividing by 4 undoes the multiplication by 4.
y=-\frac{5x}{4}-6
Divide -24-5x by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}