Solve for x
x=-\frac{29y}{10}-\frac{5227z}{500}-1.4
Solve for y
y=-\frac{10x}{29}-\frac{5227z}{1450}-\frac{14}{29}
Share
Copied to clipboard
5x+52.27z=-7-14.5y
Subtract 14.5y from both sides.
5x=-7-14.5y-52.27z
Subtract 52.27z from both sides.
5x=-\frac{29y}{2}-\frac{5227z}{100}-7
The equation is in standard form.
\frac{5x}{5}=\frac{-\frac{29y}{2}-\frac{5227z}{100}-7}{5}
Divide both sides by 5.
x=\frac{-\frac{29y}{2}-\frac{5227z}{100}-7}{5}
Dividing by 5 undoes the multiplication by 5.
x=-\frac{29y}{10}-\frac{5227z}{500}-\frac{7}{5}
Divide -7-\frac{29y}{2}-\frac{5227z}{100} by 5.
14.5y+52.27z=-7-5x
Subtract 5x from both sides.
14.5y=-7-5x-52.27z
Subtract 52.27z from both sides.
14.5y=-\frac{5227z}{100}-5x-7
The equation is in standard form.
\frac{14.5y}{14.5}=\frac{-\frac{5227z}{100}-5x-7}{14.5}
Divide both sides of the equation by 14.5, which is the same as multiplying both sides by the reciprocal of the fraction.
y=\frac{-\frac{5227z}{100}-5x-7}{14.5}
Dividing by 14.5 undoes the multiplication by 14.5.
y=-\frac{10x}{29}-\frac{5227z}{1450}-\frac{14}{29}
Divide -7-5x-\frac{5227z}{100} by 14.5 by multiplying -7-5x-\frac{5227z}{100} by the reciprocal of 14.5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}