Solve for x
x=13
Graph
Share
Copied to clipboard
0.5\times 5\sqrt{x^{2}-25}=95-5x
Subtract 5x from both sides of the equation.
2.5\sqrt{x^{2}-25}=95-5x
Multiply 0.5 and 5 to get 2.5.
\left(2.5\sqrt{x^{2}-25}\right)^{2}=\left(95-5x\right)^{2}
Square both sides of the equation.
2.5^{2}\left(\sqrt{x^{2}-25}\right)^{2}=\left(95-5x\right)^{2}
Expand \left(2.5\sqrt{x^{2}-25}\right)^{2}.
6.25\left(\sqrt{x^{2}-25}\right)^{2}=\left(95-5x\right)^{2}
Calculate 2.5 to the power of 2 and get 6.25.
6.25\left(x^{2}-25\right)=\left(95-5x\right)^{2}
Calculate \sqrt{x^{2}-25} to the power of 2 and get x^{2}-25.
6.25x^{2}-156.25=\left(95-5x\right)^{2}
Use the distributive property to multiply 6.25 by x^{2}-25.
6.25x^{2}-156.25=9025-950x+25x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(95-5x\right)^{2}.
6.25x^{2}-156.25-9025=-950x+25x^{2}
Subtract 9025 from both sides.
6.25x^{2}-9181.25=-950x+25x^{2}
Subtract 9025 from -156.25 to get -9181.25.
6.25x^{2}-9181.25+950x=25x^{2}
Add 950x to both sides.
6.25x^{2}-9181.25+950x-25x^{2}=0
Subtract 25x^{2} from both sides.
-18.75x^{2}-9181.25+950x=0
Combine 6.25x^{2} and -25x^{2} to get -18.75x^{2}.
-18.75x^{2}+950x-9181.25=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-950±\sqrt{950^{2}-4\left(-18.75\right)\left(-9181.25\right)}}{2\left(-18.75\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -18.75 for a, 950 for b, and -9181.25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-950±\sqrt{902500-4\left(-18.75\right)\left(-9181.25\right)}}{2\left(-18.75\right)}
Square 950.
x=\frac{-950±\sqrt{902500+75\left(-9181.25\right)}}{2\left(-18.75\right)}
Multiply -4 times -18.75.
x=\frac{-950±\sqrt{902500-688593.75}}{2\left(-18.75\right)}
Multiply 75 times -9181.25.
x=\frac{-950±\sqrt{213906.25}}{2\left(-18.75\right)}
Add 902500 to -688593.75.
x=\frac{-950±\frac{925}{2}}{2\left(-18.75\right)}
Take the square root of 213906.25.
x=\frac{-950±\frac{925}{2}}{-37.5}
Multiply 2 times -18.75.
x=-\frac{\frac{975}{2}}{-37.5}
Now solve the equation x=\frac{-950±\frac{925}{2}}{-37.5} when ± is plus. Add -950 to \frac{925}{2}.
x=13
Divide -\frac{975}{2} by -37.5 by multiplying -\frac{975}{2} by the reciprocal of -37.5.
x=-\frac{\frac{2825}{2}}{-37.5}
Now solve the equation x=\frac{-950±\frac{925}{2}}{-37.5} when ± is minus. Subtract \frac{925}{2} from -950.
x=\frac{113}{3}
Divide -\frac{2825}{2} by -37.5 by multiplying -\frac{2825}{2} by the reciprocal of -37.5.
x=13 x=\frac{113}{3}
The equation is now solved.
5\times 13+0.5\times 5\sqrt{13^{2}-25}=95
Substitute 13 for x in the equation 5x+0.5\times 5\sqrt{x^{2}-25}=95.
95=95
Simplify. The value x=13 satisfies the equation.
5\times \frac{113}{3}+0.5\times 5\sqrt{\left(\frac{113}{3}\right)^{2}-25}=95
Substitute \frac{113}{3} for x in the equation 5x+0.5\times 5\sqrt{x^{2}-25}=95.
\frac{845}{3}=95
Simplify. The value x=\frac{113}{3} does not satisfy the equation.
x=13
Equation \frac{5\sqrt{x^{2}-25}}{2}=95-5x has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}