5x+ \frac{ 40 }{ 36 } x(1-7x) = 40 \%
Solve for x
x=\frac{\sqrt{2017}}{140}+\frac{11}{28}\approx 0.713650165
x=-\frac{\sqrt{2017}}{140}+\frac{11}{28}\approx 0.07206412
Graph
Share
Copied to clipboard
5x+\frac{10}{9}x\left(1-7x\right)=\frac{40}{100}
Reduce the fraction \frac{40}{36} to lowest terms by extracting and canceling out 4.
5x+\frac{10}{9}x+\frac{10}{9}x\left(-7\right)x=\frac{40}{100}
Use the distributive property to multiply \frac{10}{9}x by 1-7x.
5x+\frac{10}{9}x+\frac{10}{9}x^{2}\left(-7\right)=\frac{40}{100}
Multiply x and x to get x^{2}.
5x+\frac{10}{9}x+\frac{10\left(-7\right)}{9}x^{2}=\frac{40}{100}
Express \frac{10}{9}\left(-7\right) as a single fraction.
5x+\frac{10}{9}x+\frac{-70}{9}x^{2}=\frac{40}{100}
Multiply 10 and -7 to get -70.
5x+\frac{10}{9}x-\frac{70}{9}x^{2}=\frac{40}{100}
Fraction \frac{-70}{9} can be rewritten as -\frac{70}{9} by extracting the negative sign.
\frac{55}{9}x-\frac{70}{9}x^{2}=\frac{40}{100}
Combine 5x and \frac{10}{9}x to get \frac{55}{9}x.
\frac{55}{9}x-\frac{70}{9}x^{2}=\frac{2}{5}
Reduce the fraction \frac{40}{100} to lowest terms by extracting and canceling out 20.
\frac{55}{9}x-\frac{70}{9}x^{2}-\frac{2}{5}=0
Subtract \frac{2}{5} from both sides.
-\frac{70}{9}x^{2}+\frac{55}{9}x-\frac{2}{5}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\frac{55}{9}±\sqrt{\left(\frac{55}{9}\right)^{2}-4\left(-\frac{70}{9}\right)\left(-\frac{2}{5}\right)}}{2\left(-\frac{70}{9}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{70}{9} for a, \frac{55}{9} for b, and -\frac{2}{5} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{55}{9}±\sqrt{\frac{3025}{81}-4\left(-\frac{70}{9}\right)\left(-\frac{2}{5}\right)}}{2\left(-\frac{70}{9}\right)}
Square \frac{55}{9} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{55}{9}±\sqrt{\frac{3025}{81}+\frac{280}{9}\left(-\frac{2}{5}\right)}}{2\left(-\frac{70}{9}\right)}
Multiply -4 times -\frac{70}{9}.
x=\frac{-\frac{55}{9}±\sqrt{\frac{3025}{81}-\frac{112}{9}}}{2\left(-\frac{70}{9}\right)}
Multiply \frac{280}{9} times -\frac{2}{5} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{55}{9}±\sqrt{\frac{2017}{81}}}{2\left(-\frac{70}{9}\right)}
Add \frac{3025}{81} to -\frac{112}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{55}{9}±\frac{\sqrt{2017}}{9}}{2\left(-\frac{70}{9}\right)}
Take the square root of \frac{2017}{81}.
x=\frac{-\frac{55}{9}±\frac{\sqrt{2017}}{9}}{-\frac{140}{9}}
Multiply 2 times -\frac{70}{9}.
x=\frac{\sqrt{2017}-55}{-\frac{140}{9}\times 9}
Now solve the equation x=\frac{-\frac{55}{9}±\frac{\sqrt{2017}}{9}}{-\frac{140}{9}} when ± is plus. Add -\frac{55}{9} to \frac{\sqrt{2017}}{9}.
x=-\frac{\sqrt{2017}}{140}+\frac{11}{28}
Divide \frac{-55+\sqrt{2017}}{9} by -\frac{140}{9} by multiplying \frac{-55+\sqrt{2017}}{9} by the reciprocal of -\frac{140}{9}.
x=\frac{-\sqrt{2017}-55}{-\frac{140}{9}\times 9}
Now solve the equation x=\frac{-\frac{55}{9}±\frac{\sqrt{2017}}{9}}{-\frac{140}{9}} when ± is minus. Subtract \frac{\sqrt{2017}}{9} from -\frac{55}{9}.
x=\frac{\sqrt{2017}}{140}+\frac{11}{28}
Divide \frac{-55-\sqrt{2017}}{9} by -\frac{140}{9} by multiplying \frac{-55-\sqrt{2017}}{9} by the reciprocal of -\frac{140}{9}.
x=-\frac{\sqrt{2017}}{140}+\frac{11}{28} x=\frac{\sqrt{2017}}{140}+\frac{11}{28}
The equation is now solved.
5x+\frac{10}{9}x\left(1-7x\right)=\frac{40}{100}
Reduce the fraction \frac{40}{36} to lowest terms by extracting and canceling out 4.
5x+\frac{10}{9}x+\frac{10}{9}x\left(-7\right)x=\frac{40}{100}
Use the distributive property to multiply \frac{10}{9}x by 1-7x.
5x+\frac{10}{9}x+\frac{10}{9}x^{2}\left(-7\right)=\frac{40}{100}
Multiply x and x to get x^{2}.
5x+\frac{10}{9}x+\frac{10\left(-7\right)}{9}x^{2}=\frac{40}{100}
Express \frac{10}{9}\left(-7\right) as a single fraction.
5x+\frac{10}{9}x+\frac{-70}{9}x^{2}=\frac{40}{100}
Multiply 10 and -7 to get -70.
5x+\frac{10}{9}x-\frac{70}{9}x^{2}=\frac{40}{100}
Fraction \frac{-70}{9} can be rewritten as -\frac{70}{9} by extracting the negative sign.
\frac{55}{9}x-\frac{70}{9}x^{2}=\frac{40}{100}
Combine 5x and \frac{10}{9}x to get \frac{55}{9}x.
\frac{55}{9}x-\frac{70}{9}x^{2}=\frac{2}{5}
Reduce the fraction \frac{40}{100} to lowest terms by extracting and canceling out 20.
-\frac{70}{9}x^{2}+\frac{55}{9}x=\frac{2}{5}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-\frac{70}{9}x^{2}+\frac{55}{9}x}{-\frac{70}{9}}=\frac{\frac{2}{5}}{-\frac{70}{9}}
Divide both sides of the equation by -\frac{70}{9}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{\frac{55}{9}}{-\frac{70}{9}}x=\frac{\frac{2}{5}}{-\frac{70}{9}}
Dividing by -\frac{70}{9} undoes the multiplication by -\frac{70}{9}.
x^{2}-\frac{11}{14}x=\frac{\frac{2}{5}}{-\frac{70}{9}}
Divide \frac{55}{9} by -\frac{70}{9} by multiplying \frac{55}{9} by the reciprocal of -\frac{70}{9}.
x^{2}-\frac{11}{14}x=-\frac{9}{175}
Divide \frac{2}{5} by -\frac{70}{9} by multiplying \frac{2}{5} by the reciprocal of -\frac{70}{9}.
x^{2}-\frac{11}{14}x+\left(-\frac{11}{28}\right)^{2}=-\frac{9}{175}+\left(-\frac{11}{28}\right)^{2}
Divide -\frac{11}{14}, the coefficient of the x term, by 2 to get -\frac{11}{28}. Then add the square of -\frac{11}{28} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{14}x+\frac{121}{784}=-\frac{9}{175}+\frac{121}{784}
Square -\frac{11}{28} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{14}x+\frac{121}{784}=\frac{2017}{19600}
Add -\frac{9}{175} to \frac{121}{784} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{28}\right)^{2}=\frac{2017}{19600}
Factor x^{2}-\frac{11}{14}x+\frac{121}{784}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{28}\right)^{2}}=\sqrt{\frac{2017}{19600}}
Take the square root of both sides of the equation.
x-\frac{11}{28}=\frac{\sqrt{2017}}{140} x-\frac{11}{28}=-\frac{\sqrt{2017}}{140}
Simplify.
x=\frac{\sqrt{2017}}{140}+\frac{11}{28} x=-\frac{\sqrt{2017}}{140}+\frac{11}{28}
Add \frac{11}{28} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}