Solve for x
x = \frac{\sqrt{718} + 50}{9} \approx 8.532835779
x = \frac{50 - \sqrt{718}}{9} \approx 2.578275332
Graph
Share
Copied to clipboard
10x\times 10-9xx=198
Multiply both sides of the equation by 2.
100x-9xx=198
Multiply 10 and 10 to get 100.
100x-9x^{2}=198
Multiply x and x to get x^{2}.
100x-9x^{2}-198=0
Subtract 198 from both sides.
-9x^{2}+100x-198=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-100±\sqrt{100^{2}-4\left(-9\right)\left(-198\right)}}{2\left(-9\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -9 for a, 100 for b, and -198 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-100±\sqrt{10000-4\left(-9\right)\left(-198\right)}}{2\left(-9\right)}
Square 100.
x=\frac{-100±\sqrt{10000+36\left(-198\right)}}{2\left(-9\right)}
Multiply -4 times -9.
x=\frac{-100±\sqrt{10000-7128}}{2\left(-9\right)}
Multiply 36 times -198.
x=\frac{-100±\sqrt{2872}}{2\left(-9\right)}
Add 10000 to -7128.
x=\frac{-100±2\sqrt{718}}{2\left(-9\right)}
Take the square root of 2872.
x=\frac{-100±2\sqrt{718}}{-18}
Multiply 2 times -9.
x=\frac{2\sqrt{718}-100}{-18}
Now solve the equation x=\frac{-100±2\sqrt{718}}{-18} when ± is plus. Add -100 to 2\sqrt{718}.
x=\frac{50-\sqrt{718}}{9}
Divide -100+2\sqrt{718} by -18.
x=\frac{-2\sqrt{718}-100}{-18}
Now solve the equation x=\frac{-100±2\sqrt{718}}{-18} when ± is minus. Subtract 2\sqrt{718} from -100.
x=\frac{\sqrt{718}+50}{9}
Divide -100-2\sqrt{718} by -18.
x=\frac{50-\sqrt{718}}{9} x=\frac{\sqrt{718}+50}{9}
The equation is now solved.
10x\times 10-9xx=198
Multiply both sides of the equation by 2.
100x-9xx=198
Multiply 10 and 10 to get 100.
100x-9x^{2}=198
Multiply x and x to get x^{2}.
-9x^{2}+100x=198
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-9x^{2}+100x}{-9}=\frac{198}{-9}
Divide both sides by -9.
x^{2}+\frac{100}{-9}x=\frac{198}{-9}
Dividing by -9 undoes the multiplication by -9.
x^{2}-\frac{100}{9}x=\frac{198}{-9}
Divide 100 by -9.
x^{2}-\frac{100}{9}x=-22
Divide 198 by -9.
x^{2}-\frac{100}{9}x+\left(-\frac{50}{9}\right)^{2}=-22+\left(-\frac{50}{9}\right)^{2}
Divide -\frac{100}{9}, the coefficient of the x term, by 2 to get -\frac{50}{9}. Then add the square of -\frac{50}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{100}{9}x+\frac{2500}{81}=-22+\frac{2500}{81}
Square -\frac{50}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{100}{9}x+\frac{2500}{81}=\frac{718}{81}
Add -22 to \frac{2500}{81}.
\left(x-\frac{50}{9}\right)^{2}=\frac{718}{81}
Factor x^{2}-\frac{100}{9}x+\frac{2500}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{50}{9}\right)^{2}}=\sqrt{\frac{718}{81}}
Take the square root of both sides of the equation.
x-\frac{50}{9}=\frac{\sqrt{718}}{9} x-\frac{50}{9}=-\frac{\sqrt{718}}{9}
Simplify.
x=\frac{\sqrt{718}+50}{9} x=\frac{50-\sqrt{718}}{9}
Add \frac{50}{9} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}