Solve for n (complex solution)
n\in \mathrm{C}
Solve for n
n\in \mathrm{R}
Share
Copied to clipboard
5n-22+6n=7\left(2n-3\right)-3n-1
Use the distributive property to multiply -2 by 11-3n.
11n-22=7\left(2n-3\right)-3n-1
Combine 5n and 6n to get 11n.
11n-22=14n-21-3n-1
Use the distributive property to multiply 7 by 2n-3.
11n-22=11n-21-1
Combine 14n and -3n to get 11n.
11n-22=11n-22
Subtract 1 from -21 to get -22.
11n-22-11n=-22
Subtract 11n from both sides.
-22=-22
Combine 11n and -11n to get 0.
\text{true}
Compare -22 and -22.
n\in \mathrm{C}
This is true for any n.
5n-22+6n=7\left(2n-3\right)-3n-1
Use the distributive property to multiply -2 by 11-3n.
11n-22=7\left(2n-3\right)-3n-1
Combine 5n and 6n to get 11n.
11n-22=14n-21-3n-1
Use the distributive property to multiply 7 by 2n-3.
11n-22=11n-21-1
Combine 14n and -3n to get 11n.
11n-22=11n-22
Subtract 1 from -21 to get -22.
11n-22-11n=-22
Subtract 11n from both sides.
-22=-22
Combine 11n and -11n to get 0.
\text{true}
Compare -22 and -22.
n\in \mathrm{R}
This is true for any n.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}