Evaluate
\frac{599}{21}\approx 28.523809524
Factor
\frac{599}{3 \cdot 7} = 28\frac{11}{21} = 28.523809523809526
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)599}\\\end{array}
Use the 1^{st} digit 5 from dividend 599
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)599}\\\end{array}
Since 5 is less than 21, use the next digit 9 from dividend 599 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)599}\\\end{array}
Use the 2^{nd} digit 9 from dividend 599
\begin{array}{l}\phantom{21)}02\phantom{4}\\21\overline{)599}\\\phantom{21)}\underline{\phantom{}42\phantom{9}}\\\phantom{21)}17\\\end{array}
Find closest multiple of 21 to 59. We see that 2 \times 21 = 42 is the nearest. Now subtract 42 from 59 to get reminder 17. Add 2 to quotient.
\begin{array}{l}\phantom{21)}02\phantom{5}\\21\overline{)599}\\\phantom{21)}\underline{\phantom{}42\phantom{9}}\\\phantom{21)}179\\\end{array}
Use the 3^{rd} digit 9 from dividend 599
\begin{array}{l}\phantom{21)}028\phantom{6}\\21\overline{)599}\\\phantom{21)}\underline{\phantom{}42\phantom{9}}\\\phantom{21)}179\\\phantom{21)}\underline{\phantom{}168\phantom{}}\\\phantom{21)9}11\\\end{array}
Find closest multiple of 21 to 179. We see that 8 \times 21 = 168 is the nearest. Now subtract 168 from 179 to get reminder 11. Add 8 to quotient.
\text{Quotient: }28 \text{Reminder: }11
Since 11 is less than 21, stop the division. The reminder is 11. The topmost line 028 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}