Solve for x
x = \frac{5 \sqrt{1093863821} - 18005}{478} \approx 308.290922127
x=\frac{-5\sqrt{1093863821}-18005}{478}\approx -383.62565016
Graph
Share
Copied to clipboard
5975x^{2}+450125x-706653125=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-450125±\sqrt{450125^{2}-4\times 5975\left(-706653125\right)}}{2\times 5975}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 5975 for a, 450125 for b, and -706653125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-450125±\sqrt{202612515625-4\times 5975\left(-706653125\right)}}{2\times 5975}
Square 450125.
x=\frac{-450125±\sqrt{202612515625-23900\left(-706653125\right)}}{2\times 5975}
Multiply -4 times 5975.
x=\frac{-450125±\sqrt{202612515625+16889009687500}}{2\times 5975}
Multiply -23900 times -706653125.
x=\frac{-450125±\sqrt{17091622203125}}{2\times 5975}
Add 202612515625 to 16889009687500.
x=\frac{-450125±125\sqrt{1093863821}}{2\times 5975}
Take the square root of 17091622203125.
x=\frac{-450125±125\sqrt{1093863821}}{11950}
Multiply 2 times 5975.
x=\frac{125\sqrt{1093863821}-450125}{11950}
Now solve the equation x=\frac{-450125±125\sqrt{1093863821}}{11950} when ± is plus. Add -450125 to 125\sqrt{1093863821}.
x=\frac{5\sqrt{1093863821}-18005}{478}
Divide -450125+125\sqrt{1093863821} by 11950.
x=\frac{-125\sqrt{1093863821}-450125}{11950}
Now solve the equation x=\frac{-450125±125\sqrt{1093863821}}{11950} when ± is minus. Subtract 125\sqrt{1093863821} from -450125.
x=\frac{-5\sqrt{1093863821}-18005}{478}
Divide -450125-125\sqrt{1093863821} by 11950.
x=\frac{5\sqrt{1093863821}-18005}{478} x=\frac{-5\sqrt{1093863821}-18005}{478}
The equation is now solved.
5975x^{2}+450125x-706653125=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
5975x^{2}+450125x-706653125-\left(-706653125\right)=-\left(-706653125\right)
Add 706653125 to both sides of the equation.
5975x^{2}+450125x=-\left(-706653125\right)
Subtracting -706653125 from itself leaves 0.
5975x^{2}+450125x=706653125
Subtract -706653125 from 0.
\frac{5975x^{2}+450125x}{5975}=\frac{706653125}{5975}
Divide both sides by 5975.
x^{2}+\frac{450125}{5975}x=\frac{706653125}{5975}
Dividing by 5975 undoes the multiplication by 5975.
x^{2}+\frac{18005}{239}x=\frac{706653125}{5975}
Reduce the fraction \frac{450125}{5975} to lowest terms by extracting and canceling out 25.
x^{2}+\frac{18005}{239}x=\frac{28266125}{239}
Reduce the fraction \frac{706653125}{5975} to lowest terms by extracting and canceling out 25.
x^{2}+\frac{18005}{239}x+\left(\frac{18005}{478}\right)^{2}=\frac{28266125}{239}+\left(\frac{18005}{478}\right)^{2}
Divide \frac{18005}{239}, the coefficient of the x term, by 2 to get \frac{18005}{478}. Then add the square of \frac{18005}{478} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{18005}{239}x+\frac{324180025}{228484}=\frac{28266125}{239}+\frac{324180025}{228484}
Square \frac{18005}{478} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{18005}{239}x+\frac{324180025}{228484}=\frac{27346595525}{228484}
Add \frac{28266125}{239} to \frac{324180025}{228484} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{18005}{478}\right)^{2}=\frac{27346595525}{228484}
Factor x^{2}+\frac{18005}{239}x+\frac{324180025}{228484}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{18005}{478}\right)^{2}}=\sqrt{\frac{27346595525}{228484}}
Take the square root of both sides of the equation.
x+\frac{18005}{478}=\frac{5\sqrt{1093863821}}{478} x+\frac{18005}{478}=-\frac{5\sqrt{1093863821}}{478}
Simplify.
x=\frac{5\sqrt{1093863821}-18005}{478} x=\frac{-5\sqrt{1093863821}-18005}{478}
Subtract \frac{18005}{478} from both sides of the equation.
x ^ 2 +\frac{18005}{239}x +\frac{28266125}{239} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 5975
r + s = -\frac{18005}{239} rs = \frac{28266125}{239}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{18005}{478} - u s = -\frac{18005}{478} + u
Two numbers r and s sum up to -\frac{18005}{239} exactly when the average of the two numbers is \frac{1}{2}*-\frac{18005}{239} = -\frac{18005}{478}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{18005}{478} - u) (-\frac{18005}{478} + u) = \frac{28266125}{239}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{28266125}{239}
\frac{749052713}{142802500} - u^2 = \frac{28266125}{239}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{28266125}{239}-\frac{749052713}{142802500} = \frac{1947332341}{142802500}
Simplify the expression by subtracting \frac{749052713}{142802500} on both sides
u^2 = -\frac{1947332341}{142802500} u = \pm\sqrt{-\frac{1947332341}{142802500}} = \pm \frac{\sqrt{1947332341}}{11950}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{18005}{478} - \frac{\sqrt{1947332341}}{11950}i = -383.626 s = -\frac{18005}{478} + \frac{\sqrt{1947332341}}{11950}i = 308.291
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}