Evaluate
\frac{298}{11}\approx 27.090909091
Factor
\frac{2 \cdot 149}{11} = 27\frac{1}{11} = 27.09090909090909
Share
Copied to clipboard
\begin{array}{l}\phantom{22)}\phantom{1}\\22\overline{)596}\\\end{array}
Use the 1^{st} digit 5 from dividend 596
\begin{array}{l}\phantom{22)}0\phantom{2}\\22\overline{)596}\\\end{array}
Since 5 is less than 22, use the next digit 9 from dividend 596 and add 0 to the quotient
\begin{array}{l}\phantom{22)}0\phantom{3}\\22\overline{)596}\\\end{array}
Use the 2^{nd} digit 9 from dividend 596
\begin{array}{l}\phantom{22)}02\phantom{4}\\22\overline{)596}\\\phantom{22)}\underline{\phantom{}44\phantom{9}}\\\phantom{22)}15\\\end{array}
Find closest multiple of 22 to 59. We see that 2 \times 22 = 44 is the nearest. Now subtract 44 from 59 to get reminder 15. Add 2 to quotient.
\begin{array}{l}\phantom{22)}02\phantom{5}\\22\overline{)596}\\\phantom{22)}\underline{\phantom{}44\phantom{9}}\\\phantom{22)}156\\\end{array}
Use the 3^{rd} digit 6 from dividend 596
\begin{array}{l}\phantom{22)}027\phantom{6}\\22\overline{)596}\\\phantom{22)}\underline{\phantom{}44\phantom{9}}\\\phantom{22)}156\\\phantom{22)}\underline{\phantom{}154\phantom{}}\\\phantom{22)99}2\\\end{array}
Find closest multiple of 22 to 156. We see that 7 \times 22 = 154 is the nearest. Now subtract 154 from 156 to get reminder 2. Add 7 to quotient.
\text{Quotient: }27 \text{Reminder: }2
Since 2 is less than 22, stop the division. The reminder is 2. The topmost line 027 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 27.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}