Evaluate
\frac{596}{21}\approx 28.380952381
Factor
\frac{2 ^ {2} \cdot 149}{3 \cdot 7} = 28\frac{8}{21} = 28.38095238095238
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)596}\\\end{array}
Use the 1^{st} digit 5 from dividend 596
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)596}\\\end{array}
Since 5 is less than 21, use the next digit 9 from dividend 596 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)596}\\\end{array}
Use the 2^{nd} digit 9 from dividend 596
\begin{array}{l}\phantom{21)}02\phantom{4}\\21\overline{)596}\\\phantom{21)}\underline{\phantom{}42\phantom{9}}\\\phantom{21)}17\\\end{array}
Find closest multiple of 21 to 59. We see that 2 \times 21 = 42 is the nearest. Now subtract 42 from 59 to get reminder 17. Add 2 to quotient.
\begin{array}{l}\phantom{21)}02\phantom{5}\\21\overline{)596}\\\phantom{21)}\underline{\phantom{}42\phantom{9}}\\\phantom{21)}176\\\end{array}
Use the 3^{rd} digit 6 from dividend 596
\begin{array}{l}\phantom{21)}028\phantom{6}\\21\overline{)596}\\\phantom{21)}\underline{\phantom{}42\phantom{9}}\\\phantom{21)}176\\\phantom{21)}\underline{\phantom{}168\phantom{}}\\\phantom{21)99}8\\\end{array}
Find closest multiple of 21 to 176. We see that 8 \times 21 = 168 is the nearest. Now subtract 168 from 176 to get reminder 8. Add 8 to quotient.
\text{Quotient: }28 \text{Reminder: }8
Since 8 is less than 21, stop the division. The reminder is 8. The topmost line 028 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 28.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}