Evaluate
\frac{119}{79}\approx 1.506329114
Factor
\frac{7 \cdot 17}{79} = 1\frac{40}{79} = 1.5063291139240507
Share
Copied to clipboard
\begin{array}{l}\phantom{395)}\phantom{1}\\395\overline{)595}\\\end{array}
Use the 1^{st} digit 5 from dividend 595
\begin{array}{l}\phantom{395)}0\phantom{2}\\395\overline{)595}\\\end{array}
Since 5 is less than 395, use the next digit 9 from dividend 595 and add 0 to the quotient
\begin{array}{l}\phantom{395)}0\phantom{3}\\395\overline{)595}\\\end{array}
Use the 2^{nd} digit 9 from dividend 595
\begin{array}{l}\phantom{395)}00\phantom{4}\\395\overline{)595}\\\end{array}
Since 59 is less than 395, use the next digit 5 from dividend 595 and add 0 to the quotient
\begin{array}{l}\phantom{395)}00\phantom{5}\\395\overline{)595}\\\end{array}
Use the 3^{rd} digit 5 from dividend 595
\begin{array}{l}\phantom{395)}001\phantom{6}\\395\overline{)595}\\\phantom{395)}\underline{\phantom{}395\phantom{}}\\\phantom{395)}200\\\end{array}
Find closest multiple of 395 to 595. We see that 1 \times 395 = 395 is the nearest. Now subtract 395 from 595 to get reminder 200. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }200
Since 200 is less than 395, stop the division. The reminder is 200. The topmost line 001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}