Solve for l
l = \frac{\sqrt{57721} - 101}{40} \approx 3.481298777
l=\frac{-\sqrt{57721}-101}{40}\approx -8.531298777
Share
Copied to clipboard
20l^{2}+101l=594
Swap sides so that all variable terms are on the left hand side.
20l^{2}+101l-594=0
Subtract 594 from both sides.
l=\frac{-101±\sqrt{101^{2}-4\times 20\left(-594\right)}}{2\times 20}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 20 for a, 101 for b, and -594 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
l=\frac{-101±\sqrt{10201-4\times 20\left(-594\right)}}{2\times 20}
Square 101.
l=\frac{-101±\sqrt{10201-80\left(-594\right)}}{2\times 20}
Multiply -4 times 20.
l=\frac{-101±\sqrt{10201+47520}}{2\times 20}
Multiply -80 times -594.
l=\frac{-101±\sqrt{57721}}{2\times 20}
Add 10201 to 47520.
l=\frac{-101±\sqrt{57721}}{40}
Multiply 2 times 20.
l=\frac{\sqrt{57721}-101}{40}
Now solve the equation l=\frac{-101±\sqrt{57721}}{40} when ± is plus. Add -101 to \sqrt{57721}.
l=\frac{-\sqrt{57721}-101}{40}
Now solve the equation l=\frac{-101±\sqrt{57721}}{40} when ± is minus. Subtract \sqrt{57721} from -101.
l=\frac{\sqrt{57721}-101}{40} l=\frac{-\sqrt{57721}-101}{40}
The equation is now solved.
20l^{2}+101l=594
Swap sides so that all variable terms are on the left hand side.
\frac{20l^{2}+101l}{20}=\frac{594}{20}
Divide both sides by 20.
l^{2}+\frac{101}{20}l=\frac{594}{20}
Dividing by 20 undoes the multiplication by 20.
l^{2}+\frac{101}{20}l=\frac{297}{10}
Reduce the fraction \frac{594}{20} to lowest terms by extracting and canceling out 2.
l^{2}+\frac{101}{20}l+\left(\frac{101}{40}\right)^{2}=\frac{297}{10}+\left(\frac{101}{40}\right)^{2}
Divide \frac{101}{20}, the coefficient of the x term, by 2 to get \frac{101}{40}. Then add the square of \frac{101}{40} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
l^{2}+\frac{101}{20}l+\frac{10201}{1600}=\frac{297}{10}+\frac{10201}{1600}
Square \frac{101}{40} by squaring both the numerator and the denominator of the fraction.
l^{2}+\frac{101}{20}l+\frac{10201}{1600}=\frac{57721}{1600}
Add \frac{297}{10} to \frac{10201}{1600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(l+\frac{101}{40}\right)^{2}=\frac{57721}{1600}
Factor l^{2}+\frac{101}{20}l+\frac{10201}{1600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(l+\frac{101}{40}\right)^{2}}=\sqrt{\frac{57721}{1600}}
Take the square root of both sides of the equation.
l+\frac{101}{40}=\frac{\sqrt{57721}}{40} l+\frac{101}{40}=-\frac{\sqrt{57721}}{40}
Simplify.
l=\frac{\sqrt{57721}-101}{40} l=\frac{-\sqrt{57721}-101}{40}
Subtract \frac{101}{40} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}