Skip to main content
Solve for y
Tick mark Image
Graph

Share

592y^{2}=106856\times 1000000000000000000-5\times 624\times 10^{9}\times 9
Calculate 10 to the power of 18 and get 1000000000000000000.
592y^{2}=106856000000000000000000-5\times 624\times 10^{9}\times 9
Multiply 106856 and 1000000000000000000 to get 106856000000000000000000.
592y^{2}=106856000000000000000000-3120\times 10^{9}\times 9
Multiply 5 and 624 to get 3120.
592y^{2}=106856000000000000000000-3120\times 1000000000\times 9
Calculate 10 to the power of 9 and get 1000000000.
592y^{2}=106856000000000000000000-3120000000000\times 9
Multiply 3120 and 1000000000 to get 3120000000000.
592y^{2}=106856000000000000000000-28080000000000
Multiply 3120000000000 and 9 to get 28080000000000.
592y^{2}=106855999971920000000000
Subtract 28080000000000 from 106856000000000000000000 to get 106855999971920000000000.
y^{2}=\frac{106855999971920000000000}{592}
Divide both sides by 592.
y^{2}=\frac{6678499998245000000000}{37}
Reduce the fraction \frac{106855999971920000000000}{592} to lowest terms by extracting and canceling out 16.
y=\frac{50000\sqrt{98841799974026}}{37} y=-\frac{50000\sqrt{98841799974026}}{37}
Take the square root of both sides of the equation.
592y^{2}=106856\times 1000000000000000000-5\times 624\times 10^{9}\times 9
Calculate 10 to the power of 18 and get 1000000000000000000.
592y^{2}=106856000000000000000000-5\times 624\times 10^{9}\times 9
Multiply 106856 and 1000000000000000000 to get 106856000000000000000000.
592y^{2}=106856000000000000000000-3120\times 10^{9}\times 9
Multiply 5 and 624 to get 3120.
592y^{2}=106856000000000000000000-3120\times 1000000000\times 9
Calculate 10 to the power of 9 and get 1000000000.
592y^{2}=106856000000000000000000-3120000000000\times 9
Multiply 3120 and 1000000000 to get 3120000000000.
592y^{2}=106856000000000000000000-28080000000000
Multiply 3120000000000 and 9 to get 28080000000000.
592y^{2}=106855999971920000000000
Subtract 28080000000000 from 106856000000000000000000 to get 106855999971920000000000.
592y^{2}-106855999971920000000000=0
Subtract 106855999971920000000000 from both sides.
y=\frac{0±\sqrt{0^{2}-4\times 592\left(-106855999971920000000000\right)}}{2\times 592}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 592 for a, 0 for b, and -106855999971920000000000 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 592\left(-106855999971920000000000\right)}}{2\times 592}
Square 0.
y=\frac{0±\sqrt{-2368\left(-106855999971920000000000\right)}}{2\times 592}
Multiply -4 times 592.
y=\frac{0±\sqrt{253035007933506560000000000}}{2\times 592}
Multiply -2368 times -106855999971920000000000.
y=\frac{0±1600000\sqrt{98841799974026}}{2\times 592}
Take the square root of 253035007933506560000000000.
y=\frac{0±1600000\sqrt{98841799974026}}{1184}
Multiply 2 times 592.
y=\frac{50000\sqrt{98841799974026}}{37}
Now solve the equation y=\frac{0±1600000\sqrt{98841799974026}}{1184} when ± is plus.
y=-\frac{50000\sqrt{98841799974026}}{37}
Now solve the equation y=\frac{0±1600000\sqrt{98841799974026}}{1184} when ± is minus.
y=\frac{50000\sqrt{98841799974026}}{37} y=-\frac{50000\sqrt{98841799974026}}{37}
The equation is now solved.